Содержание

📌 Компиляция (программирование) — это… 🎓 Что такое Компиляция (программирование)?

Компиля́тор —

  • Программа, предназначенная для трансляции высокоуровневого языка в абсолютный код или, иногда, в язык ассемблера. Входной информацией для компилятора (исходный код) является описание алгоритма или программа на проблемно-ориентированном языке, а на выходе компилятора — эквивалентное описание алгоритма на машинно-ориентированном языке (объектный код).[5]

Компиляция

  • Трансляция программы на язык, близкий к машинному.[3][2]
  • Трансляция программы, составленной на исходном языке, в объектный модуль. Осуществляется компилятором.[2]

Компилировать — проводить трансляцию машинной программы с проблемно-ориентированного языка на машинно-ориентированный язык.[3]

Виды компиляторов[2]

  • Векторизующий. Транслирует исходный код в машинный код компьютеров, оснащённых векторным процессором.
  • Гибкий. Составлен по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью компилятора компиляторов.
  • Диалоговый. См.: диалоговый транслятор.
  • Инкрементальный. Повторно транслирует фрагменты программы и дополнения к ней без перекомпиляции всей программы.
  • Интерпретирующий (пошаговый). Последовательно выполняет независимую компиляцию каждого отдельного оператора (команды) исходной программы.
  • Компилятор компиляторов. Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.
  • Отладочный. Устраняет отдельные виды синтаксических ошибок.
  • Резидентный. Постоянно находится в основной памяти и доступен для повторного использования многими задачами.
  • Самокомпилируемый. Написан на том же языке, с которого осуществляется трансляция.
  • Универсальный. Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический и семантический загрузчики.

Виды компиляции[2]

  • Пакетная. Компиляция нескольких исходных модулей в одном пункте задания.
  • Построчная. То же, что и интерпретация.
  • Условная. Компиляция, при которой транслируемый текст зависит от условий, заданных в исходной программе. Так, в зависимости от значения некоторой константы, можно включать или выключать трансляцию части текста программы.

Основы

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен центральным процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной.

Некоторые компиляторы (например, низкоуровневом языке. Такой язык — байт-код — также можно считать языком машинных команд, поскольку он подлежит интерпретации виртуальной машиной. Например, для языка Java это JVM (язык виртуальной машины Java), или так называемый байт-код Java (вслед за ним все промежуточные низкоуровневые языки стали называть байт-кодами). Для языков программирования на платформе .NET Framework (C#, Managed C++, Visual Basic .NET и другие) — это MSIL (Microsoft Intermediate Language).

Программа на байт-коде подлежит интерпретации виртуальной машиной, либо ещё одной компиляции уже в машинный код непосредственно перед исполнением. Последнее называется «Just-In-Time компиляция» (MSIL-код компилируется в код целевой машины также JIT-компилятором, а библиотеки .NET Framework компилируются заранее).

Для каждой целевой машины (Apple и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС получать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут быть оптимизированы под разные типы процессоров из одного семейства (путём использования специфичных для этих процессоров инструкций). Например, код, скомпилированный под процессоры семейства MMX, SSE2.

Также существуют компиляторы, переводящие программу с языка высокого уровня на язык ассемблера.

Существуют программы, которые решают обратную задачу — перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а программы — декомпиляторами. Но поскольку компиляция — это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах — например, существует довольно надёжный декомпилятор для Flash. Сходным процессом является дизассемблирование машинного кода в код на языке ассемблера, который всегда выполняется успешно. Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически однозначное соответствие.

Структура компилятора

Процесс компиляции состоит из следующих этапов:

  1. Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.
  2. Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в дерево разбора.
  3. Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) — например, привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным деревом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.
  4. Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах — например, над промежуточным кодом или над конечным машинным кодом.
  5. Генерация кода. Из промежуточного представления порождается код на целевом языке.

В конкретных реализациях компиляторов эти этапы могут быть раздельны или совмещены в том или ином виде.

Трансляция и компоновка

Важной исторической особенностью компилятора, отражённой в его названии (англ. compile — собирать вместе, составлять), являлось то, что он мог производить и компоновку (то есть содержал две части — транслятор и компоновщик). Это связано с тем, что раздельная компиляция и компоновка как отдельная стадия сборки выделились значительно позже появления компиляторов, и многие популярные компиляторы (например, GCC) до сих пор физически объединены со своими компоновщиками. В связи с этим, вместо термина «компилятор» иногда используют термин «транслятор» как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчёркивания способности собирать из многих файлов один).

Интересные факты

  • На заре развития компьютеров первые компиляторы (трансляторы) называли «программирующими программами»[6] (так как в тот момент программой считался только машинный код, а «программирующая программа» была способна из человеческого текста сделать машинный код, то есть запрограммировать ЭВМ).

Примечания

  1. ГОСТ 19781-83 // Вычислительная техника. Терминология: Справочное пособие. Выпуск 1 / Рецензент канд. техн. наук Ю. П. Селиванов. — М.: Издательство стандартов, 1989. — 168 с. — 55 000 экз. — ISBN 5-7050-0155-X
  2. 1 2 3 4 5 6 7 Першиков В. И., Савинков В. М. Толковый словарь по информатике / Рецензенты: канд. физ.-мат. наук А. С. Марков и д-р физ.-мат. наук И. В. Поттосин. — М.: Финансы и статистика, 1991. — 543 с. — 50 000 экз. — ISBN 5-279-00367-0
  3. 1 2 3 СТ ИСО 2382/7-77 // Вычислительная техника. Терминология. Указ. соч.
  4. Борковский А. Б. Англо-русский словарь по программированию и информатике (с толкованиями). — М.: Русский язык, 1990. — 335 с. — 50 050 (доп.) экз. — ISBN 5-200-01169-3
  5. Толковый словарь по вычислительным системам = Dictionary of Computing / Под ред. В. Иллингуорта и др.: Пер. с англ. А. К. Белоцкого и др.; Под ред. Е. К. Масловского. — М.: Машиностроение, 1990. — 560 с. — 70 000 (доп.) экз. — ISBN 5-217-00617-X (СССР), ISBN 0-19-853913-4 (Великобритания)
  6. Н. А. Криницкий, Г. А. Миронов, Г. Д. Фролов. Программирование / Под ред. М. Р. Шура-Бура. — М.: Государственное издательство физико-математической литературы, 1963.

См. также

Реализации компиляторов

Литература

  • Альфред В. Ахо, Моника С. Лам, Рави Сети, Джеффри Д. Ульман. Компиляторы: принципы, технологии и инструментарий = Compilers: Principles, Techniques, and Tools. — 2-е изд. — М.: Вильямс, 2008. — ISBN 978-5-8459-1349-4
  • Робин Хантер. Основные концепции компиляторов = The Essence of Compilers. — М.: Вильямс, 2002. — С. 256. — ISBN 0-13-727835-7
  • Хантер Р. Проектирование и конструирование компиляторов / Пер. с англ. С. М. Круговой. — М.: Финансы и статистика, 1984. — 232 с.
  • Д. Креншоу. Давайте создадим компилятор!.

Wikimedia Foundation.
2010.

dic.academic.ru

Компилятор

Компиля́тор — программа или
техническое средство, выполняющее компиляцию.

Компиляция — трансляция
программы,
составленной на исходном языке
высокого уровня,
в эквивалентную программу на низкоуровневом
языке,
близком машинному
коду
(абсолютный
код, объектный
модуль,
иногда на язык
ассемблера). Входной
информацией для компилятора (исходный
код)
является описание алгоритма или программа
напроблемно-ориентированном
языке,
а на выходе компилятора — эквивалентное
описание алгоритма на машинно-ориентированном
языке (объектный код).

Компилировать —
проводить трансляцию машинной программы
с проблемно-ориентированного языка на
машинно-ориентированный язык.

Виды
компиляторов

  • Векторизующий.
    Транслирует исходный
    код в машинный
    код компьютеров,
    оснащённых векторным
    процессором.

  • Гибкий.
    Сконструирован по модульному принципу,
    управляется таблицами и запрограммирован
    на языке
    высокого уровня или
    реализован с помощью компилятора
    компиляторов.

  • Диалоговый.
    См.: диалоговый
    транслятор.

  • Инкрементальный.
    Повторно транслирует фрагменты программы
    и дополнения к ней без перекомпиляции
    всей программы.

  • Интерпретирующий
    (пошаговый)
    .
    Последовательно выполняет независимую
    компиляцию каждого отдельного оператора (команды)
    исходной программы.

  • Компилятор
    компиляторов
    .
    Транслятор, воспринимающий формальное
    описание языка
    программирования и
    генерирующий компилятор для этого
    языка.

  • Отладочный.
    Устраняет отдельные виды синтаксических
    ошибок.

  • Резидентный.
    Постоянно находится в оперативной
    памяти и доступен для повторного
    использования многими задачами.

  • Самокомпилируемый.
    Написан на том же языке, с которого
    осуществляется трансляция.

  • Универсальный.
    Основан на формальном описании синтаксиса
    и семантики входного языка. Составными
    частями такого компилятора являются:
    ядро, синтаксический исемантический загрузчики.

Виды
компиляции

  • Пакетная.
    Компиляция нескольких исходных модулей
    в одном пункте задания.

  • Построчная.
    То же, что и интерпретация.

  • Условная.
    Компиляция, при которой транслируемый
    текст зависит от условий, заданных в
    исходной программе директивами
    компилятора. Так, в зависимости от
    значения некоторой константы, можно
    включать или выключать трансляцию
    части текста программы.

Структура
компилятора

Процесс компиляции
состоит из следующих этапов:

  1. Лексический анализ.
    На этом этапе последовательность
    символов исходного файла преобразуется
    в последовательность лексем.

  2. Синтаксический
    (грамматический) анализ.
    Последовательность лексем преобразуется
    в дерево разбора.

  3. Семантический анализ.
    Дерево разбора обрабатывается с целью
    установления его семантики (смысла) —
    например, привязка идентификаторов к
    их декларациям, типам, проверка
    совместимости, определение типов
    выражений и т. д. Результат обычно
    называется «промежуточным
    представлением/кодом», и может быть
    дополненным деревом разбора, новым
    деревом, абстрактным набором команд
    или чем-то ещё, удобным для дальнейшей
    обработки.

  4. Оптимизация.
    Выполняется удаление излишних конструкций
    и упрощение кода с сохранением его
    смысла. Оптимизация может быть на разных
    уровнях и этапах — например, над
    промежуточным кодом или над конечным
    машинным кодом.

  5. Генерация кода.
    Из промежуточного представления
    порождается код на целевом языке.

В конкретных реализациях
компиляторов эти этапы могут быть
разделены или, наоборот, совмещены в
том или ином виде.

Генерация
кода

Генерация
машинного кода

Большинство
компиляторов переводит программу с
некоторого высокоуровневого
языка программирования в машинный
код,
который может быть непосредственно
выполнен процессором.
Как правило, этот код также ориентирован
на исполнение в среде конкретной операционной
системы,
поскольку использует предоставляемые
ею возможности (системные
вызовы,
библиотеки функций). Архитектура (набор
программно-аппаратных средств), для
которой производится компиляция,
называется целевой
машиной
.

Результат компиляции —
исполнимый модуль — обладает
максимальной возможной производительностью,
однако привязан к определённой
операционной системе и процессору (и
не будет работать на других).

Для каждой
целевой машины (IBM, Apple, Sun и т. д.)
и каждой операционной системы или
семейства операционных систем, работающих
на целевой машине, требуется написание
своего компилятора. Существуют также
так называемые кросс-компиляторы,
позволяющие на одной машине и в среде
одной ОС генерировать код, предназначенный
для выполнения на другой целевой машине
и/или в среде другой ОС. Кроме того,
компиляторы могут оптимизировать код
под разные модели из одного семейства
процессоров (путём поддержки специфичных
для этих моделей особенностей или
расширений наборов инструкций). Например,
код, скомпилированный под процессоры
семейства Pentium,
может учитывать особенности
распараллеливания инструкций и
использовать их специфичные
расширения — MMX, SSE и т. п.

Некоторые
компиляторы переводят программу с языка
высокого уровня не прямо в машинный
код, а на язык
ассемблера.
Это делается для упрощения части
компилятора, отвечающей за кодогенерацию,
и повышения его переносимости (задача
окончательной генерации кода и привязки
его к требуемой целевой платформе
перекладывается на ассемблер),
либо для возможности контроля и
исправления результата компиляции
программистом.

Генерация
байт-кода

Результатом
работы компилятора может быть программа
на специально созданном низкоуровневом
языке,
подлежащем интерпретации виртуальной
машиной
.
Такой язык называется псевдокодом
или байт-кодом.
Как правило, он не является машинным
кодом какого-либо компьютера и программы
на нём могут исполняться на различных
архитектурах, где имеется соответствующая
виртуальная машина, но в некоторых
случаях создаются аппаратные платформы,
напрямую поддерживающие псевдокод
какого-либо языка. Например, псевдокод
языка Java называется байт-кодом
Java (англ.
Java bytecode
)
и выполняется в Java
Virtual Machine, для его прямого исполнения
была создана спецификация процессора picoJava.
Для
платформы .NET
Framework псевдокод
называется Common
Intermediate Language (CIL),
а
среда
исполнения —
Common Language Runtime (CLR).

Некоторые реализации
интерпретируемых языков высокого уровня
(например, Perl) используют байт-код для
оптимизации исполнения: затратные этапы
синтаксического анализа и преобразование
текста программы в байт-код выполняются
один раз при загрузке, затем соответствующий
код может многократно использоваться
без промежуточных этапов.

Динамическая
компиляция

Основная
статья:
 JIT-компиляция

Из-за
необходимости интерпретации байт-код
выполняется значительно медленнее
машинного кода сравнимой функциональности,
однако он более переносим (не зависит
от операционной системы и модели
процессора). Чтобы ускорить выполнение
байт-кода, используется динамическая
компиляция
,
когда виртуальная машина транслирует
псевдокод в машинный код непосредственно
перед его первым исполнением (и в при
повторных обращениях к коду исполняется
уже скомпилированный вариант).

CIL-код
также компилируется в код целевой машины
JIT-компилятором, а библиотеки .NET
Framework компилируются
заранее.

Декомпиляция

Существуют
программы, которые решают обратную
задачу — перевод программы с
низкоуровневого языка на высокоуровневый.
Этот процесс называют декомпиляцией,
а такие программы — декомпиляторами.
Но поскольку компиляция — это процесс
с потерями, точно восстановить исходный
код, скажем, на C++, в общем случае
невозможно. Более эффективно декомпилируются
программы в байт-кодах — например,
существует довольно надёжный декомпилятор
для Flash.
Разновидностью декомпилирования
являетсядизассемблирование машинного
кода в код на языке ассемблера, который
почти всегда выполняется успешно (при
этом сложность может
представлять самомодифицирующийся
код или
код, в котором собственно код и данные
не разделены). Связано это с тем, что
между кодами машинных команд и командами
ассемблера имеется практически
взаимно-однозначное соответствие.

Раздельная
компиляция

Раздельная
компиляция
 (англ. separate
compilation
) —
трансляция частей программы по отдельности
с последующим объединением их компоновщиком в
единый загрузочный модуль.

Исторически
особенностью компилятора, отражённой
в его названии (англ.
compile
 —
собирать вместе, составлять), являлось
то, что он производил как трансляцию,
так и компоновку, при этом компилятор
мог порождать сразу абсолютный
код.
Однако позже, с ростом сложности и
размера программ (и увеличением времени,
затрачиваемого на перекомпиляцию),
возникла необходимость разделять
программы на части и выделять библиотеки,
которые можно компилировать независимо
друг от друга. При трансляции каждой
части программы компилятор
порождает объектный
модуль,
содержащий дополнительную информацию,
которая потом, при компоновке частей в
исполнимый модуль, используется для
связывания и разрешения ссылок между
частями.

Появление раздельной
компиляции и выделение компоновки как
отдельной стадии произошло значительно
позже создания компиляторов. В связи с
этим вместо термина «компилятор» иногда
используют термин «транслятор» как его
синоним: либо в старой литературе, либо
когда хотят подчеркнуть его способность
переводить программу в машинный код (и
наоборот, используют термин «компилятор»
для подчёркивания способности собирать
из многих файлов один).

studfiles.net

Компиляция программы

А сейчас поговорим об одном из самых важнейших этапов, от которого зависит правильность получаемого результата — это компиляция программы.

Под исходной программой мы понимаем программу, представленную в виде определенных конструкций языка программирования. Программа включает в себя инструкции, понятные каждому пользователю, но в то же время не понятные процессору ПК.

Для выполнения процессором работы по инструкциям исходной программы, эту программу следует перевести на язык команд, понятный процессору — машинный язык.

Чтобы преобразовать исходную программу на машинный язык, используется специально предназначенная для этого программа под названием «компилятор». В этом и заключается компиляция программы.

Схема действия компилятора:

Схема, по которой работает компилятор, приведена на рисунке ниже:

Основные задачи компилятора:

На рисунке отмечено, что компилятор последовательно осуществляет две основные задачи:

  1. Производит проверку текста исходной программы на содержание или отсутствие в ней всевозможных синтаксических ошибок.
  2. Разрабатывает исполняемую программу — преобразует исходную программу в машинный код.

Заметка. Процесс генерации исполняемой программы осуществляется только тогда, когда текст исходной программы не содержит синтаксические ошибки.

Таким образом, генерация машинного кода при помощи компилятора говорит о том, что синтаксические ошибки в тексте программы отсутствуют. Как удостовериться в правильности работы программы? Все достаточно просто. Необходимо провести ее тестирование — провести несколько пробных запусков исходной программы и затем проанализировать полученные результаты.

Допустим перед нами программа, которая определяет корни квадратного уравнения. Если в этой программе допущена ошибка в каком-либо месте формулы, например при вычислении дискриминанта, то, при отсутствии синтаксических ошибок, программа в конечном счете выдаст сообщение о неверных значениях корней.


Похожие записи:

kvodo.ru

Интерпретация и компиляция | Веб-программирование

2.8K

Одной из ключевых характеристик PHP является то, что это интерпретируемый язык программирования. С другой стороны, языки программирования наподобие C, изначально разрабатывались для компиляции. Что это значит?

Компилируется ли язык программирования или интерпретируется, на самом деле это не зависит от природы языка программирования. Любой язык программирования может интерпретироваться так называемым интерпретатором или компилироваться с помощью так называемого компилятора.

При использовании любого языка программирования существует определенный рабочий цикл создания кода. Вы пишете его, запускаете, находите ошибки и отлаживаете. Таким образом, вы переписываете и дописываете программу, проверяете ее. То, о чем пойдет речь в этой статье, это «запускаемая» часть программы.

Когда пишете программу, вы хотите, чтобы ее инструкции работали на компьютере. Компьютер обрабатывает информацию с помощью процессора, который поэтапно выполняет инструкции, закодированные в двоичном формате. Как из выражения «a = 3;» получить закодированные инструкции, которые процессор может понять?

Мы делаем это с помощью компиляции. Существует специальные приложения, известные как компиляторы. Они принимают программу, которую вы написали. Затем анализируют и разбирают каждую часть программы и строят машинный код для процессора. Часто его также называют объектным кодом.

На одном из этапов процесса обработки задействуется компоновщик, принимающий части программы, которые отдельно были преобразованы в объектный код, и связывает их в один исполняемый файл. Вот схема, описывающая данный процесс:

Конечным элементом этого процесса является исполняемый файл. Когда вы запускаете или сообщаете компьютеру, что это исполняемый файл, он берет первую же инструкцию из него, не фильтрует, не преобразует, а сразу запускает программу и выполняет ее без какого-либо дополнительного преобразования. Это ключевая характеристика процесса компиляции — его результат должен быть исполняемым файлом, не требующим дополнительного перевода, чтобы процессор мог начать выполнять первую инструкцию и все следующие за ней.

Первые компиляторы были написаны непосредственно через машинный код или с использованием ассемблеров. Но цель компилятора очевидна: перевести программу в исполняемый машинный код для конкретного процессора.

Некоторые языки программирования разрабатывались с учетом компиляции. C, например, предназначался для того, чтобы дать возможность программистам с легкостью реализовать разные вещи. Но в итоге он разрабатывался таким образом, чтобы его можно было легко перевести на машинный код. Компиляция в программировании это серьезно!

Не все языки программирования учитывают это в своей концепции. Например, Java предназначался для запуска в «интерпретирующей» среде, а Python всегда должен интерпретироваться.

Альтернативой компиляции является интерпретация. Основная разница между компилятором и интерпретатором заключается в том, как они работают. Компилятор берет всю программу и преобразует ее в машинный код, который понимает процессор.

Интерпретатор — это исполняемый файл, который поэтапно читает программу, а затем обрабатывает, сразу выполняя ее инструкции.

Другими словами, интерпретатор выполняет программу поэтапно как часть собственного исполняемого файла. Объектный код не передается процессору, интерпретатор сам является объектным кодом, построенным таким образом, чтобы его можно было вызвать в определенное время.

Это ломает рабочий цикл, который был приведен на диаграмме выше. Теперь у нас есть новая диаграмма:

На ней мы видим, что в отличие от компилятора, интерпретатор всегда должен быть под рукой, чтобы мы могли вызвать его и запустить нашу программу. В некотором смысле интерпретатор становится процессором. Программы, написанные для интерпретации, называются «скриптами», потому что они являются сценариями действий для другой программы, а не прямым машинным кодом.

Например, так работают такие языки программирования, как Python. Вы пишете программу. Затем вводите код в интерпретатор Python, и он выполняет все описанные вами шаги. В командной строке вы можете ввести примерно следующее:

В этой команде Python — это исполняемый файл. Вы вводите в него все, что находится в файле myprogram.py, и он выполняет эти инструкции. Компьютер не запустит myprogram.py без Python. Это не машинный код, который понимает процессор. Можно скомпилировать программы Python в объектный или машинный код и запустить его непосредственно в процессоре. Но эта процедура включает в себя компиляцию кода и добавление в качестве ее части всего интерпретатора Python.

Интерпретаторы могут создаваться по-разному. Существуют интерпретаторы, которые читают исходную программу и не выполняют дополнительной обработки. Они просто берут определенное количество строк кода за раз и выполняют его.

Некоторые интерпретаторы выполняют собственную компиляцию, но обычно преобразуют программу байтовый код, который имеет смысл только для интерпретатора. Это своего рода псевдо машинный язык, который понимает только интерпретатор.

Такой код быстрее обрабатывается, и его проще написать для исполнителя (части интерпретатора, которая исполняет), который считывает байтовый код, а не код источника.

Есть интерпретаторы, для которых этот вид байтового кода имеет более важное значение. Например, язык программирования Java «запускается» на так называемой виртуальной машине. Она является исполняемым кодом или частью программы, которая считывает конкретный байтовый код и эмулирует работу процессора. Обрабатывая байтовый код так, как если бы процессор компьютера был виртуальным процессором.

У меня есть эмулятор для игровой приставки NIntendo. Когда я загружаю ROM-файл Dragon Warrior, он форматируется в машинный код, который понимает только процессор NES. Но если я создаю виртуальный процессор, который интерпретирует байтовый код во время работы на другом процессоре, я могу запустить Dragon Warrior на любой машине с эмулятором.

Это использует концепция компиляции Java, а также все интерпретаторы. На любом процессоре, для которого я могу создать интерпретатор / эмулятор, можно запускать мои интерпретируемые программы / байтовый код. В этом заключается основное преимущество интерпретатора над компилятором.

Основным аргументом за использование процесса компиляции является скорость. Возможность компилировать любой программный код в машинный, который может понять процессор ПК, исключает использование промежуточного кода. Можно запускать программы без дополнительных шагов, тем самым увеличивая скорость обработки кода.

Но наибольшим недостатком компиляции является специфичность. Когда компилируете программу для работы на конкретном процессоре, вы создаете объектный код, который будет работать только на этом процессоре. Если хотите, чтобы программа запускалась на другой машине, вам придется перекомпилировать программу под этот процессор. А перекомпиляция может быть довольно сложной, если процессор имеет ограничения или особенности, не присущие первому. А также может вызывать ошибки компиляции.

Основное преимущество интерпретации — гибкость. Можно не только запускать интерпретируемую программу на любом процессоре или платформе, для которых интерпретатор был скомпилирован. Написанный интерпретатор может предложить дополнительную гибкость. В определенном смысле интерпретаторы проще понять и написать, чем компиляторы.

С помощью интерпретатора проще добавить дополнительные функции, реализовать такие элементы, как сборщики мусора, а не расширять язык.

Другим преимуществом интерпретаторов является то, что их проще переписать или перекомпилировать для новых платформ.

Написание компилятора для процессора требует добавления множества функций, или полной переработки. Но как только компилятор написан, можно скомпилировать кучу интерпретаторов и на выходе мы имеем перспективный язык. Не нужно повторно внедрять интерпретатор на базовом уровне для другого процессора.

Самым большим недостатком интерпретаторов является скорость. Для каждой программы выполняется так много переводов, фильтраций, что это приводит к замедлению работы и мешает выполнению программного кода.

Это проблема для конкретных real-time приложений, таких как игры с высоким разрешением и симуляцией. Некоторые интерпретаторы содержат компоненты, которые называются just-in-time компиляторами (JIT). Они компилируют программу непосредственно перед ее исполнением. Это специальные программы, вынесенные за рамки интерпретатора. Но поскольку процессоры становятся все более мощными, данная проблема становится менее актуальной.

Имейте всегда в виду, что некоторые языки программирования специально предназначены для компиляции кода, например, C. В то время как другие языки всегда должны интерпретироваться, например Java.

Для меня не имеет значения, скомпилировано что-то или интерпретировано, если оно может выполнить задачу эффективно.

Некоторые системы не предлагают технические условия для эффективного использования интерпретаторов. Поэтому вы должны запрограммировать их с помощью чего-то, что может быть непосредственно скомпилировано, например C. Иногда нужно выполнить вычисления настолько интенсивно, насколько это возможно. Например, при точном распознавании голоса роботом. В других случаях скорость или вычислительная мощность могут быть не столь критичными, и написать эмулятор на оригинальном языке может быть проще.

Сообщите мне, что бы вы предпочли: интерпретацию или компиляцию? Спасибо за уделенное время!

Данная публикация представляет собой перевод статьи «Interpretation Versus Compilation» , подготовленной дружной командой проекта Интернет-технологии.ру

www.internet-technologies.ru

Компилятор — Национальная библиотека им. Н. Э. Баумана

Материал из Национальной библиотеки им. Н. Э. Баумана
Последнее изменение этой страницы: 15:50, 24 ноября 2016.

Компиля́тор — программа или техническое средство, выполняющее компиляцию[1][2][3].

Компиля́ция — трансляция программы, составленной на исходном языке высокого уровня, в эквивалентную программу на низкоуровневом языке, близком машинному коду (абсолютный код, объектный модуль, иногда на язык ассемблера)[2][3][4]. Входной информацией для компилятора (исходный код) является описание алгоритма или программа на предметно-ориентированном языке, а на выходе компилятора — эквивалентное описание алгоритма на машинно-ориентированном языке (объектный код)[5].

Компили́ровать — проводить трансляцию машинной программы с предметно-ориентированного языка на машинно-ориентированный язык[3].

Виды компиляторов

  • Векторизующий. Транслирует исходный код в машинный код компьютеров, оснащённых векторным процессором.
  • Гибкий. Сконструирован по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью компилятора компиляторов.
  • Диалоговый. См.: диалоговый транслятор.
  • Инкрементальный. Повторно транслирует фрагменты программы и дополнения к ней без перекомпиляции всей программы.
  • Интерпретирующий (пошаговый). Последовательно выполняет независимую компиляцию каждого отдельного оператор оператора (команды) исходной программы.
  • Компилятор компиляторов. Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.
  • Отладочный. Устраняет отдельные виды синтаксических ошибок.
  • Резидентный. Постоянно находится в оперативной памяти и доступен для повторного использования многими задачами.
  • Самокомпилируемый. Написан на том же языке, с которого осуществляется трансляция.
  • Универсальный. Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический и семантический загрузчики.

Виды компиляции

  • Пакетная. Компиляция нескольких исходных модулей в одном пункте задания.
  • Построчная. Машинный код порождается и затем исполняется для каждой завершённой грамматической конструкции языка. Внешне воспринимается как интерпретация, но устройство иное.
  • Условная. Компиляция, при которой транслируемый текст зависит от условий, заданных в исходной программе директивами компилятора. Так, в зависимости от значения некоторой константы, можно включать или выключать трансляцию части текста программы.

Структура компилятора

Процесс компиляции состоит из следующих этапов:

  1. Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.
  2. Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в дерево разбора.
  3. Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) — например, привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным деревом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.
  4. Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах — например, над промежуточным кодом или над конечным машинным кодом.
  5. Генерация кода. Из промежуточного представления порождается код на целевом языке.

В конкретных реализациях компиляторов эти этапы могут быть разделены или, наоборот, совмещены в том или ином виде.

Генерация кода

Генерация машинного кода

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной.

Результат компиляции — исполнимый модуль — обладает максимальной возможной производительностью, однако привязан к определённой операционной системе и процессору (и не будет работать на других).

Для каждой целевой машины (IBM, Apple, Sun и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС генерировать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут оптимизировать код под разные модели из одного семейства процессоров (путём поддержки специфичных для этих моделей особенностей или расширений наборов инструкций). Например, код, скомпилированный под процессоры семейства Pentium, может учитывать особенности распараллеливания инструкций и использовать их специфичные расширения — MMX, SSE и т. п.

Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера (примером может служить PureBasic, транслирующий бейсик-код в ассемблер FASM). Это делается для упрощения части компилятора, отвечающей за кодогенерацию, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции программистом.

Генерация байт-кода

Результатом работы компилятора может быть программа на специально созданном низкоуровневом языке, подлежащем интерпретации виртуальной машиной. Такой язык называется псевдокодом или байт-кодом. Как правило, он не является машинным кодом какого-либо компьютера и программы на нём могут исполняться на различных архитектурах, где имеется соответствующая виртуальная машина, но в некоторых случаях создаются аппаратные платформы, напрямую поддерживающие псевдокод какого-либо языка. Например, псевдокод языка Java называется байт-кодом Java и выполняется в Java Virtual Machine, для его прямого исполнения была создана спецификация процессора picoJava. Для платформы .NET Framework псевдокод называется Common Intermediate Language (CIL), а среда исполнения — Common Language Runtime (CLR).

Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без промежуточных этапов.

Динамическая компиляция

Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция, когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и при повторных обращениях к коду исполняется уже скомпилированный вариант).

Наиболее популярной разновидностью динамической компиляции является JIT-компиляция. Другой разновидностью является.
CIL-код также компилируется в код целевой машины JIT-компилятором, а библиотеки .NET Framework компилируются заранее.

Декомпиляция

Существуют программы, которые решают обратную задачу — перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а такие программы — декомпиляторами. Но поскольку компиляция — это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах — например, существует довольно надёжный декомпилятор для Adobe Flash. Разновидностью декомпилирования является дизассемблирование машинного кода в код на языке ассемблера, который почти всегда выполняется успешно (при этом сложность может представлять самомодифицирующийся код или код, в котором собственно код и данные не разделены). Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически взаимно-однозначное соответствие.

Раздельная компиляция

Раздельная компиляция (англ. separate compilation) — трансляция частей программы по отдельности с последующим объединением их компоновщиком в единый загрузочный модуль.

Исторически особенностью компилятора, отражённой в его названии (англ. compile — собирать вместе, составлять), являлось то, что он производил как трансляцию, так и компоновку, при этом компилятор мог порождать сразу машинный код. Однако позже, с ростом сложности и размера программ (и увеличением времени, затрачиваемого на перекомпиляцию), возникла необходимость разделять программы на части и выделять библиотеки, которые можно компилировать независимо друг от друга. При трансляции каждой части программы компилятор порождает объектный модуль, содержащий дополнительную информацию, которая потом, при компоновке частей в исполнимый модуль, используется для связывания и разрешения ссылок между частями.

Появление раздельной компиляции и выделение компоновки как отдельной стадии произошло значительно позже создания компиляторов. В связи с этим вместо термина «компилятор» иногда используют термин «транслятор» как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчёркивания способности собирать из многих файлов один).

Интересные факты

На заре развития компьютеров первые компиляторы (трансляторы) называли «программирующими программами»[6] (так как в тот момент программой считался только машинный код, а «программирующая программа» была способна из человеческого текста сделать машинный код, то есть запрограммировать ЭВМ).

Примечание

ru.bmstu.wiki

Компиляция программ Linux | Losst

Все программы для компьютера представляют собой набор команд процессора, которые состоят из определенного набора бит. Этих команд несколько сотен и с помощью них выполняются все действия на вашем компьютере. Но писать программы непосредственно с помощью этих команд сложно. Поэтому были придуманы различные языки программирования, которые проще для восприятия человеку.

Для подготовки программы к выполнению, специальная программа собирает ее из исходного кода на языке программирования в машинный код — команды процессора. Этот процесс называется компиляция. Linux — это свободное программное обеспечение, а поэтому исходные коды программ доступны всем желающим. Если программы нет в репозитории или вы хотите сделать что-то нестандартное, то вы можете выполнить компиляцию программы.

В этой статье мы рассмотрим, как выполняется компиляция программ Linux, как происходит процесс компиляции, а также рассмотрим насколько гибко вы сможете все настроить.

Содержание статьи:

Подготовка системы

Мы будем компилировать программы, написанные на Си или С++, так как это наиболее используемый язык для программ, которые требуют компиляции. Мы уже немного рассматривали эту тему в статье установка из tar.gz в Linux, но та статья ориентирована больше на новичков, которым нужно не столько разобраться, сколько получить готовую программу.

В этой же статье тема рассмотрена более детально. Как вы понимаете, для превращения исходного кода в команды процессора нужно специальное программное обеспечение. Мы будем использовать компилятор GCC. Для установки его и всех необходимых инструментов в Ubuntu выполните:

sudo apt install build-essential manpages-dev git automake autoconf

Затем вы можете проверить правильность установки и версию компилятора:

 gcc --version

Но перед тем как переходить к самой компиляции программ рассмотрим более подробно составляющие этого процесса.

Как выполняется компиляция?

Компиляция программы Linux — это довольно сложный процесс. Все еще сложнее, потому что код программы содержится не в одном файле и даже не во всех файлах ее исходников. Каждая программа использует множество системных библиотек, которые содержат стандартные функции. К тому же один и тот же код должен работать в различных системах, содержащих различные версии библиотек.

На первом этапе, еще до того как начнется непосредственно компиляция, специальный инструмент должен проверить совместима ли ваша система с программой, а также есть ли все необходимые библиотеки. Если чего-либо нет, то будет выдана ошибка и вам придется устранить проблему.

Дальше идет синтаксический анализ и преобразование исходного кода в объектный код, без этого этапа можно было бы и обойтись, но это необходимо, чтобы компилятор мог выполнить различные оптимизации, сделать размер конечной программы меньше, а команды процессора эффективнее.

Затем все объектные файлы собираются в одну программу, связываются с системными библиотеками. После завершения этого этапа программу остается только установить в файловую систему и все. Вот такие основные фазы компиляции программы, а теперь перейдем ближе к практике.

Компиляция программ Linux

Первое что нам понадобиться — это исходники самой программы. В этом примере мы будем собирать самую последнюю версию vim. Это вполне нейтральная программа, достаточно простая и нужная всем, поэтому она отлично подойдет для примера.

Получение исходников

Первое что нам понадобиться, это исходные коды программы, которые можно взять на GitHub. Вы можете найти исходники для большинства программ Linux на GitHub. Кроме того, там же есть инструкции по сборке:

Давайте загрузим сами исходники нашей программы с помощью утилиты git:

git clone https://github.com/vim/vim

Также, можно было скачать архив на сайте, и затем распаковать его в нужную папку, но так будет удобнее. Утилита создаст папку с именем программы, нам нужно сделать ее рабочей:

cd vim

 

Настройка configure

Дальше нам нужно запустить скрипт, который проверит нашу программу на совместимость с системой и настроит параметры компиляции. Он называется configure и поставляется разработчиками программы вместе с исходниками. Весь процесс компиляции описан в файле Makefile, его будет создавать эта утилита.

Если configure нет в папке с исходниками, вы можете попытаться выполнить такие скрипты чтобы его создать:

./bootstrap
$ ./autogen.sh

 

Также для создания этого скрипта можно воспользоваться утилитой automake:

aclocal
$ autoheader
$ automake --gnu --add-missing --copy --foreign
$ autoconf -f -Wall

Утилита automake и другие из ее набора генерируют необходимые файлы на основе файла Mackefile.am. Этот файл обязательно есть в большинстве проектов.

После того как вы получили configure мы можем переходить к настройке. Одним из огромных плюсов ручной сборки программ есть то, что вы можете сами выбрать с какими опциями собирать программу, где она будет размещена и какие дополнительные возможности стоит включить. Все это настраивается с помощью configure. Полный набор опций можно посмотреть, выполнив:

./configure --help

 

 

Рассмотрим наиболее часто используемые, стандартные для всех программ опции:

  • —prefix=PREFIX — папка для установки программы, вместо /, например, может быть /usr/local/, тогда все файлы будут распространены не по основной файловой системе, а в /usr/local;
  • —bindir=DIR — папка для размещения исполняемых файлов, должна находится в PREFIX;
  • —libdir=DIR — папка для размещения и поиска библиотек по умолчанию, тоже в PREFIX;
  • —includedir=DIR — папка для размещения man страниц;
  • —disable-возможность — отключить указанную возможность;
  • —enable-возможность — включить возможность;
  • —with-библиотека — подобно enable активирует указанную библиотеку или заголовочный файл;
  • —without-библиотека — подобное disable отключает использование библиотеки.

Вы можете выполнить configure без опций, чтобы использовать значения по умолчанию, но также можете вручную указать нужные пути. В нашем случае ./configure есть, и мы можем его использовать:

./configure

Во время настройки утилита будет проверять, есть ли все необходимые библиотеки в системе, и если нет, вам придется их установить или отключить эту функцию, если это возможно. Например, может возникнуть такая ошибка: no terminal library found checking for tgetent()… configure: error: NOT FOUND!

В таком случае нам необходимо установить требуемую библиотеку. Например, программа предлагает ncurses, поэтому ставим:

sudo apt install libncurces-dev

Приставка lib всегда добавляется перед библиотеками, а -dev — означает, что нам нужна библиотека со всеми заголовочными файлами. После удовлетворения всех зависимостей настройка пройдет успешно.

Сборка программы

Когда настройка будет завершена и Makefile будет готов, вы сможете перейти непосредственно к сборке программы. На этом этапе выполняется непосредственно преобразование исходного кода в машинный. Утилита make на основе Makefile сделает все необходимые действия:

make

Дальше осталось установить саму программу, если вы использовали опцию prefix, чтобы не устанавливать программу в основную файловую систему, то можно применить стандартную опцию make:

make install

После этого программа будет установлена в указанную вами папку, и вы сможете ее использовать. Но более правильный путь — создавать пакет для установки программы, это делается с помощью утилиты checkinstall, она позволяет создавать как deb, так и rpm пакеты, поэтому может использоваться не только в Ubuntu. Вместо make install выполните:

checkinstall

Затем просто установите получившийся пакет с помощью dpkg:

sudo dpkg install vim.deb

После этого сборка программы полностью завершена и установлена, так что вы можете переходить к полноценному использованию.

Если вы устанавливали программу с помощью make install, то удалить ее можно выполнив в той же папке обратную команду:

sudo make uninstall

Команда удалит все файлы, которые были скопированы в файловую систему.

Выводы

В этой статье мы рассмотрели, как выполняется компиляция программы Linux. Этот процесс может быть сложным для новичков, но в целом, все возможно, если потратить на решение задачи несколько часов. Если у вас остались вопросы, спрашивайте в комментариях!

На завершение видео о том, что такое компилятор и интерпретатор:

losst.ru

это процесс, облегчающий общение программиста и вычислительной машины

Создавая на завершающем этапе определенную программу, любому программисту приходиться обращаться к услугам компилятора. В технической документации этой программе отведено довольно скромное определение как утилите, выполняющей компиляцию. Компиляция — это процесс превращения программы, написанной на языке, понятном человеку (языке высокого уровня), в команды, понятные для машины (низкоуровневый язык). В результате получаем программу, которая близка машинному коду. Она может выглядеть как объектный модуль, абсолютный код. Иногда такая программа похожа на язык ассемблера.

Таким образом, компиляция — это когда входная информация (исходный код), представляющая описание алгоритма или написанная на проблемно-ориентированном языке программа, переписывается в эквивалентный перечень команд, представленных в объектном коде (машинно-ориентированном языке).

Если еще упростить определение, то компилировать — это транслировать машинную программу с проблемно-ориентированного в машинно-ориентированный язык.

Несмотря на прозрачность и простоту определения, компиляция — это процесс довольно многоплановый. Существует несколько ее видов. Пакетная компиляция осуществляется над несколькими исходными модулями в одном пункте задания. Построчная компиляция — это то же самое, что и интерпретация (пошаговая независимая компиляция каждого последующего оператора). Еще существует условная компиляция. В таком случае транслируемый текст имеет зависимость от условий, которые заданы в исходной программе директивами компилятора.

Меняя значение определенной константы, можно регулировать включение или выключение трансляции части текста программы.

Для удобства программистов при решении различных задач применяются наиболее удобные и приспособленные компиляторы. Если произвести их классификацию, то можно выделить несколько видов подобных утилит.

Компилятор векторизующий производит трансляцию исходного кода в машинный компьютерный код, подстраиваясь под векторные процессоры.

Гибкий компилятор был разработан на основе модульного принципа. Его управление осуществляется таблицами. Запрограммирован он на высокоуровневом языке. Также возможна его реализация при помощи компилятора компиляторов.

Компилятор инкрементальный осуществляет повторное транслирование фрагментов программы и дополнений к ней, при этом перекомпиляция всей программы исключается.

Интерпретирующий или пошаговый компилятор использует принцип последовательного выполнения независимой компиляции для каждого отдельного оператора или команды из исходной программы.

Компилятор компиляторов — это транслятор, который воспринимает формальное описание для языка программирования. Он способен самостоятельно генерировать компилятор для конкретного языка.

Отладочный компилятор может самостоятельно устранять некоторые виды ошибок синтаксиса.

Резидентному компилятору отведено постоянное место в оперативной памяти, и он доступен при повторном использовании широким спектром задач.

Существуют самокомпилируемые компиляторы. Они пишутся тем же языком, с которого происходит трансляция.

Универсальный компилятор имеет в основании формальное описание семантики и синтаксиса входного языка. Он состоит из ядра, синтаксического и семантического загрузчиков.

Наиболее часто встречающиеся задачи, где компиляторы находят себе применение, − это компиляция ядра для платформы Linux. Операция эта позволяет решить широкий спектр проблем, связанных с согласованием оборудования и настройки наиболее приемлемой версии платформы.

Компиляция Java реализовывается при использовании компиляторов, работающих на самых различных платформах. Это позволяет исходные коды перекомпилировать под потребности операционных систем от разных производителей.

fb.ru