Остаток от деления в Python 3 и целая часть при делении
Python — популярный высокоуровневый язык программирования. Он обладает большим набором инструментов, имеет динамическую типизацию и используется для решения любых видов задач.
Деление в Python разделяется на три вида: обычное, целочисленное и взятие остатка. Программисту не нужно заботиться о типах операндов, Python сам определяет их и приводит результат к нужному виду. Как это делается, разберемся в этой статье.
Оператор деления
Деление в Python обозначается косой чертой «/». Примечательно, что результат в консоле всегда приводится к типу «float», даже если оба операнда были целочисленного типа, об этом свидетельствует появление «.0» у полученного значения.
Это появилось в 3-ей версии Python, ранее результатом деления целых чисел было только целое число, чтобы получить дробный результат, программисты явно указывали одному из операндов тип «float», в противном случае дробная часть просто отбрасывалась.
Важно понимать, что деление в Python, как и другие операции, работает медленнее, чем в более низкоуровневых языках программирования. Это связано с высоким уровнем автоматизации и абстракции, из-за динамической типизации интерпретатор вынужден приводить числа к дробному типу «float»
Деление в представлении человека отличается от его представления в компьютере. Компьютер устроен так, что все арифметические операции могут выполняться только через сложение. Это значит, что быстрее всего выполняется сложение, затем вычитание, где необходимо менять знак операндов, умножение, где число складывается много раз. Деление выполняется дольше всех, потому что помимо многократно повторяющейся операции сложения необходимо также менять знак операндов, что требует больше памяти и действий.
Примеры:
print(int(1) / int(2)) print(5 / 5) print(1 / 3) 0.5 1.0 0.3333333333333333
Из примера видно, что не смотря на то, что во всех случаях операция была между целыми числами, результатом деления в Python 3 является вещественное число. В первом случае мы даже специально использовали приведение к типу int.
Дополнительно хотелось бы отметить, что если точности типа данных float не достаточно, можно воспользоваться библиотекой decimal. В частности мы её использовали при написании программы «калькулятор» в отдельной статье.Деление без остатка
Чтобы выполнить деление на цело в Python, можно воспользоваться целочисленным делением. В этом случае результатом будет целое число, без остатка.
В отличие от других языков программирования Python позволяет результату целочисленного деления быть как целым (int), так и дробным (float) числом. В обоих случаях дробная часть отбрасывается и получается число с окончанием «.0».
Примеры нахождения целой части от деления:
print(5 // 2) print(0 // 2) print(1234 // 5.0) 2 0 246.0
В первых двух случаях деление осуществлялось между целыми числами. Поэтому в результате было получено целое число. В третьем примере одно из чисел вещественное. В этом случае в результате получаем так же вещественное число (типа float), после запятой у которого 0.
Остаток
Для получения остатка от деления в Python 3 используется операция, обозначающаяся символом процента «%». Остаток — это оставшаяся после целочисленного деления часть числа. Операция взятия остатка используется для решения различных видов задач.
Примеры:
print(10 % 3) print(5 % 10) print(5 % 0.25) 1 5 0.0
Определение остатка от деления очень часто используется в программах для нахождения, допустим, чётных чисел. Или, например, если обработка данных выполняется в цикле, и нужно выводить в консоль сообщение о ходе обработки не каждый раз, а на каждой 10-ой итерации.
Вот пример вывода чётных чисел из списка в консоль:
example_list = [3, 7, 2, 8, 1, 12] for value in example_list: if value % 2 == 0: print(value) 2 8 12
Проблемы чисел с плавающей точкой
Компьютер устроен так, что на аппаратном уровне понимает только две цифры: один и ноль. Из-за этого при делении и других операциях с дробями часто возникают проблемы. Например, 1/10 в двоичном представлении является неправильной бесконечной дробью. Её нельзя написать полностью, поэтому приходится округлять, а выбор значения при округлении ограничен нулем и единицей.
Что говорить о делении, если ошибки возникают и при операции сложения. Если сложить число «0.1» с самим собой четырнадцать раз, то получиться 1.400…01. Откуда взялась эта единица? Она появилась при переводе числа из двоичного вида в десятичный.
a = 0.1 for i in range(13): a += 0.1 print(a) 1.4000000000000001
Более технически сложное деление приводит к подобным неточностям гораздо чаще. Обычно Python округляет результат так, что пользователь не замечает этой проблемы, но если получается достаточно длинное число, то проблема проявляется.
Деление комплексных чисел
Комплексные числа — это числа вида «a + b·i». Они занимают наивысшую ступень в иерархии чисел, арифметические операции над ними существенно отличаются от операций над обычными числами.
Деление комплексного числа на обычное меняет лишь длину радиус вектора, но не его направление.
Пример:
print((5 + 8j) / 2) (2.5+4j)
Сокращенные операции деления
Чтобы упростить жизнь программистов, разработчики Python включили в язык «сокращенные операции». Их используют если надо выполнить операцию над переменной и полученный результат записать в эту же переменную. То, что записывается в длинной форме, можно записать в более короткой по следующим правилам:
Полная форма | Краткая форма | |
Деление | a = a / b | a /= b |
Целая часть | a = a // b | a //=b |
Остаток | a = a % b | a %= b |
Приведём пример:
a = 245 a %= 17 print(a) 7
Деление на ноль
Если попробовать в Python выполнить деление на 0, то мы получим исключение ZeroDivisionError.
Исключение следует обрабатывать, это можно сделать так:
try: print(24 / 0) except Exception as e: print(e) division by zero
Но в этом случае мы обрабатываем все исключения. Зачастую так делать не совсем корректно. Мы знаем, что в нашем коде возможно деление на 0 и, чтобы отловить именно эту ошибку, следует заменить
на except ZeroDivisionError as e:
.
Но можно и проверять перед выполнением операции, что делитель не равен 0. Например так:
a = 14 b = None if a == 0: print('делитель равен нулю!') else: b = 345/a print('Операция выполнена, результат = ' + str(b)) Операция выполнена, результат = 24.642857142857142
all-python.ru
Python | Операции с числами
Операции с числами
Последнее обновление: 20.06.2017
Арифметические операции
Python поддерживает все распространенные арифметические операции:
+
print(6 + 2) # 8
—
Вычитание двух чисел:
print(6 - 2) # 4
*
Умножение двух чисел:
print(6 * 2) # 12
/
Деление двух чисел:
print(6 / 2) # 3.0
//
Целочисленное деление двух чисел:
print(7 / 2) # 3.5 print(7 // 2) # 3
Данная операция возвращает целочисленный результат деления, отбрасывая дробную часть
**
Возведение в степень:
print(6 ** 2) # Возводим число 6 в степень 2. Результат - 36
%
Получение остатка от деления:
print(7 % 2) # Получение остатка от деления числа 7 на 2. Результат - 1
В данном случае ближайшее число к 7, которое делится на 2 без остатка, это 6. Поэтому остаток от деления равен 7 — 6 = 1
При последовательном использовании нескольких арифметических операций их выполнение производится в соответствии с их приоритетом. В начале выполняются операции с большим приоритетом. Приоритеты операций в порядке убывания приведены в следующей таблице.
Операции | Направление |
** | Слева направо |
* / // % | Слева направо |
+ — | Слева направо |
Пусть у нас выполняется следующее выражение:
number = 3 + 4 * 5 ** 2 + 7 print(number) # 110
Здесь начале выполняется возведение в степень (5 ** 2) как операция с большим приоритетом, далее результат умножается на 4 (25 * 4), затем происходит сложение (3 + 100) и далее опять идет сложение (103 + 7).
Чтобы переопределить порядок операций, можно использовать скобки:
number = (3 + 4) * (5 ** 2 + 7) print(number) # 224
Следует отметить, что в арифметических операциях могут принимать участие как целые, так и дробные числа. Если в одной операции участвует целое число (int) и число с плавающей точкой (float), то целое число приводится к типу float.
Арифметические операции с присвоением
Ряд специальных операций позволяют использовать присвоить результат операции первому операнду:
+=
Присвоение результата сложения
-=
Присвоение результата вычитания
*=
Присвоение результата умножения
/=
Присвоение результата от деления
//=
Присвоение результата целочисленного деления
**=
Присвоение степени числа
%=
Присвоение остатка от деления
Примеры операций:
number = 10 number += 5 print(number) # 15 number -= 3 print(number) # 12 number *= 4 print(number) # 48
Функции преобразования чисел
Ряд встроенных функций в Python позволяют работать с числами. В частности, функции int() и float() позволяют привести значение к типу int и float соответственно.
Например, пусть у нас будет следующий код:
first_number = "2" second_number = 3 third_number = first_number + second_number
Мы ожидаем, что «2» + 3 будет равно 5. Однако этот код сгенерирует исключение, так как первое число на самом деле представляет строку. И чтобы все заработало как надо, необходимо привести строку к числу с помощью функции int():
first_number = "2" second_number = 3 third_number = int(first_number) + second_number print(third_number) # 5
Аналогичным образом действует функция float(), которая преобразует в число с плавающей точкой. Но вообще с дробными числами надо учитывать, что результат операций с ними может быть не совсем точным. Например:
first_number = 2.0001 second_number = 5 third_number = first_number / second_number print(third_number) # 0.40002000000000004
В данном случае мы ожидаем получить число 0.40002, однако в конце через ряд нулей появляется еще какая-то четверка. Или еще одно выражение:
print(2.0001 + 0.1) # 2.1001000000000003
В этот случае для округления результата мы можем использовать функцию round():
first_number = 2.0001 second_number = 0.1 third_number = first_number + second_number print(round(third_number, 4)) # 2.1001
Первый параметр функции — округляемое число, а второй — сколько знаков после запятой должно содержать получаемое число.
Представление числа
При обычном определении числовой переменной она получает значение в десятичной системе. Но кроме десятичной в Python мы можем использовать двоичную, восьмеричную и шестнадцатеричную системы.
Для определения числа в двоичной системе перед его значением ставится 0 и префикс b:
x = 0b101 # 101 в двоичной системе равно 5
Для определения числа в восьмеричной системе перед его значением ставится 0 и префикс o:
a = 0o11 # 11 в восьмеричной системе равно 9
Для определения числа в шестнадцатеричной системе перед его значением ставится 0 и префикс x:
y = 0x0a # a в шестнадцатеричной системе равно 10
И с числами в других системах измерения также можно проводить арифметические операции:
x = 0b101 # 5 y = 0x0a # 10 z = x + y # 15 print("{0} in binary {0:08b} in hex {0:02x} in octal {0:02o}".format(z))
Для вывода числа в различных системах исчисления используются функция format, которая вызывается у строки. В эту строку передаются различные форматы. Для двоичной системы «{0:08b}», где число 8 указывает, сколько знаков должно быть в записи числа. Если знаков указано больше, чем требуется для числа, то ненужные позиции заполняются нулями. Для шестнадцатеричной системы применяется формат «{0:02x}». И здесь все аналогично — запись числа состоит из двух знаков, если один знак не нужен, то вместо него вставляется ноль. А для записи в восьмеричной системе испольуется формат «{0:02o}».
Результат работы скрипта:
15 in binary 00001111 in hex 0f in octal 17
metanit.com
Числа: целые, вещественные, комплексные | Python 3 для начинающих и чайников
Числа в Python 3: целые, вещественные, комплексные. Работа с числами и операции над ними.
Целые числа (int)
Числа в Python 3 ничем не отличаются от обычных чисел. Они поддерживают набор самых обычных математических операций:
x + y | Сложение |
x — y | Вычитание |
x * y | Умножение |
x / y | Деление |
x // y | Получение целой части от деления |
x % y | Остаток от деления |
-x | Смена знака числа |
abs(x) | Модуль числа |
divmod(x, y) | Пара (x // y, x % y) |
x ** y | Возведение в степень |
pow(x, y[, z]) | xy по модулю (если модуль задан) |
Также нужно отметить, что целые числа в python 3, в отличие от многих других языков, поддерживают длинную арифметику (однако, это требует больше памяти).
>>> 255 + 34 289 >>> 5 * 2 10 >>> 20 / 3 6.666666666666667 >>> 20 // 3 6 >>> 20 % 3 2 >>> 3 ** 4 81 >>> pow(3, 4) 81 >>> pow(3, 4, 27) 0 >>> 3 ** 150 369988485035126972924700782451696644186473100389722973815184405301748249
Битовые операции
Над целыми числами также можно производить битовые операции
x | y | Побитовое или |
x ^ y | Побитовое исключающее или |
x & y | Побитовое и |
x << n | Битовый сдвиг влево |
x >> y | Битовый сдвиг вправо |
~x | Инверсия битов |
Дополнительные методы
int.bit_length() — количество бит, необходимых для представления числа в двоичном виде, без учёта знака и лидирующих нулей.
>>> n = -37 >>> bin(n) '-0b100101' >>> n.bit_length() 6
int.to_bytes(length, byteorder, *, signed=False) — возвращает строку байтов, представляющих это число.
>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() // 8) + 1, byteorder='little') b'\xe8\x03'
classmethod int.from_bytes(bytes, byteorder, *, signed=False) — возвращает число из данной строки байтов.
>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680
Системы счисления
Те, у кого в школе была информатика, знают, что числа могут быть представлены не только в десятичной системе счисления. К примеру, в компьютере используется двоичный код, и, к примеру, число 19 в двоичной системе счисления будет выглядеть как 10011. Также иногда нужно переводить числа из одной системы счисления в другую. Python для этого предоставляет несколько функций:
- int([object], [основание системы счисления]) — преобразование к целому числу в десятичной системе счисления. По умолчанию система счисления десятичная, но можно задать любое основание от 2 до 36 включительно.
- bin(x) — преобразование целого числа в двоичную строку.
- hex(х) — преобразование целого числа в шестнадцатеричную строку.
- oct(х) — преобразование целого числа в восьмеричную строку.
Примеры:
>>> a = int('19') # Переводим строку в число >>> b = int('19.5') # Строка не является целым числом Traceback (most recent call last): File "", line 1, in ValueError: invalid literal for int() with base 10: '19.5' >>> c = int(19.5) # Применённая к числу с плавающей точкой, отсекает дробную часть >>> print(a, c) 19 19 >>> bin(19) '0b10011' >>> oct(19) '0o23' >>> hex(19) '0x13' >>> 0b10011 # Так тоже можно записывать числовые константы 19 >>> int('10011', 2) 19 >>> int('0b10011', 2) 19
Вещественные числа (float)
Вещественные числа поддерживают те же операции, что и целые. Однако (из-за представления чисел в компьютере) вещественные числа неточны, и это может привести к ошибкам:
>>> 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 0.9999999999999999
Для высокой точности используют другие объекты (например Decimal и Fraction)).
Также вещественные числа не поддерживают длинную арифметику:
>>> a = 3 ** 1000 >>> a + 0.1 Traceback (most recent call last): File "", line 1, in OverflowError: int too large to convert to float
Простенькие примеры работы с числами:
>>> c = 150 >>> d = 12.9 >>> c + d 162.9 >>> p = abs(d - c) # Модуль числа >>> print(p) 137.1 >>> round(p) # Округление 137
Дополнительные методы
float.as_integer_ratio() — пара целых чисел, чьё отношение равно этому числу.
float.is_integer() — является ли значение целым числом.
float.hex() — переводит float в hex (шестнадцатеричную систему счисления).
classmethod float.fromhex(s) — float из шестнадцатеричной строки.
>>> (10.5).hex() '0x1.5000000000000p+3' >>> float.fromhex('0x1.5000000000000p+3') 10.5
Помимо стандартных выражений для работы с числами (а в Python их не так уж и много), в составе Python есть несколько полезных модулей.
Модуль math предоставляет более сложные математические функции.
>>> import math >>> math.pi 3.141592653589793 >>> math.sqrt(85) 9.219544457292887
Модуль random реализует генератор случайных чисел и функции случайного выбора.
>>> import random >>> random.random() 0.15651968855132303
Комплексные числа (complex)
В Python встроены также и комплексные числа:
>>> x = complex(1, 2) >>> print(x) (1+2j) >>> y = complex(3, 4) >>> print(y) (3+4j) >>> z = x + y >>> print(x) (1+2j) >>> print(z) (4+6j) >>> z = x * y >>> print(z) (-5+10j) >>> z = x / y >>> print(z) (0.44+0.08j) >>> print(x.conjugate()) # Сопряжённое число (1-2j) >>> print(x.imag) # Мнимая часть 2.0 >>> print(x.real) # Действительная часть 1.0 >>> print(x > y) # Комплексные числа нельзя сравнить Traceback (most recent call last): File "", line 1, in TypeError: unorderable types: complex() > complex() >>> print(x == y) # Но можно проверить на равенство False >>> abs(3 + 4j) # Модуль комплексного числа 5.0 >>> pow(3 + 4j, 2) # Возведение в степень (-7+24j)
Также для работы с комплексными числами используется также модуль cmath.
pythonworld.ru
Как выполнять математические действия с помощью операторов Python 3
В этом руководстве мы будем работать с двумя типами данных в Python – целыми числами (integer) и числами с плавающей точкой (floats):
- Целые – числа без дробной части, которые могут быть положительными, отрицательными или нулём (…, -1, 0, 1, …).
- С плавающей точкой – это числа, содержащие десятичную точку (например, 9.0 или -2.25).
В этой статье будут описаны операции с числовыми типами данных в Python.
Оператор – это символ, которая обозначает операцию. Например, в математике знак плюса или + – это оператор сложения.
Мы рассмотрим схожие операторы, которые перешли в Python из математики. Но другие операторы специфичны именно для программирования.
Ниже представлена таблица с кратким обзором математических операторов, доступных в Python.
Операция | Возвращаемое значение |
x + y | Сумма x и y. |
x — y | Разность x и y. |
-x | Изменение знака x. |
+x | Тождественность x. |
x * y | Произведение x и y. |
x / y | Частное от деления x на y. |
x // y | Частное от целочисленного деления x на y. |
x % y | Остаток от деления x / y. |
x ** y | x в степени y. |
В Python операторы суммы и разности выполняют те же операции, что и в математике. Поэтому вы можете использовать этот язык программирования как калькулятор.
Рассмотрим некоторые примеры. Начнём с целых чисел:
Вывод
Вместо передачи целых чисел напрямую в функцию
мы можем инициализировать переменные для этих значений:a = 88 b = 103 print(a + b)
Вывод
Целые числа могут быть как положительными, так и отрицательными. Поэтому можно добавлять отрицательные числа к положительным:
c = -36 d = 25 print(c + d)
Вывод
Прибавление работает аналогично и с числами с плавающей запятой:
e = 5.5 f = 2.5 print(e + f)
Вывод
Синтаксис разности тот же, что и для прибавления, за исключением того, что вместо оператора сложения (
) необходимо использовать оператор вычитания ():g = 75.67 h = 32 print(g - h)
Вывод
В этом примере мы вычитаем целое число из числа с плавающей точкой. Python возвратит число с плавающей точкой, если хотя бы одно из чисел выражения является числом с плавающей точкой.
Унарное математическое выражение состоит из одного элемента. В Python знаки плюса и минуса могут быть использованы как единичный оператор, чтобы вернуть тождественное значение (+) или сменить знак числа (-).
Знак плюса означает тождественное значение. Мы можем использовать его с положительными значениями:
Вывод
Когда мы используем знак плюса с отрицательным значением, он также вернёт значение тождественное данному. В этом случае он вернёт отрицательное значение:
Вывод
При использовании с отрицательным значением знак плюса возвращает то же отрицательное значение.
Минус (в отличие от знака плюса) изменяет знак числа. Поэтому при передаче положительного числа мы получим отрицательное значение:
Вывод
А когда мы используем минус в качестве унарного оператора с отрицательным значением, будет возвращено положительное число:
Вывод
Унарные арифметические операторы возвращают тождественное значение в случае с +i, или противоположное по знаку число в случае с -i.
Оператор, которые мы будем использовать в Python для умножения «*», а для деления «/». Пример умножения двух чисел с плавающей точкой в Python:
k = 100.1 l = 10.1 print(k * l)
Вывод
Когда вы выполняете деление в Python 3, частное всегда будет числом с плавающей точкой, даже если вы используете два целых числа:
m = 80 n = 5 print(m / n)
Вывод
Это одно из наиболее существенных отличий Python 2 от Python 3. В Python 3 результатом будет дробное число. Поэтому, когда вы используете оператора «/» для деления 11 на 2, возвращено будет 5.5. В Python 2 возвращаемое значение деления 11 / 2 было 5.
В Python 2 оператор «/» выполняет целочисленное деление, где частное x, а возвращаемое число – это наибольшее целое число, меньшее или равное x. Если вы выполните пример, приведённый выше, в Python 2, то получите 16 без десятичной точки.
В Python 3 для целочисленного деления можно использовать оператор «//». Выражение 100 // 40 вернёт значение 2.
Оператор % используется для деления по модулю, и возвращает остаток от деления, а не частное. Это полезно, например, для нахождения множителей числа.
Пример деления по модулю (с остатком):
o = 85 p = 15 print(o % p)
Вывод
В этом примере 85 делится на 15. Результат – 5 с остатком 10. Значение
выводится, поскольку оператор возвращает остаток от деления.Если мы используем два числа с плавающей точкой для деления по модулю, число с плавающей точкой будет возвращено в качестве остатка:
q = 36.0 r = 6.0 print(o % p)
Вывод
В приведенном выше примере 36.0 делится на 6.0 без остатка, поэтому возвращается значение 0.0.
Оператор «**» в Python используется для возведения числа, расположенного слева от оператора в степень, указанную справа. То есть, в выражении 5 ** 3, число 5 возводится в третью степень.
В математике часто используется выражение 5³. То есть 5 умножается на себя три раза. В Python мы получим тот же результат (125) выполнив 5 ** 3 или 5 * 5 * 5.
Пример с переменными:
s = 52.25 t = 7 print(s ** t) 1063173305051.292
Возведение числа с плавающей точкой 52.25 в степень 7 с помощью оператора ** приводит к выводу большого числа с плавающей точкой.
В Python операторы выполняются в порядке приоритета. Посмотрим на следующее выражение:
Умножение выполняется первым. Поэтому, если мы вызовем метод
, то получим следующее значение:Вывод
Это потому, что
равно , а затем мы прибавляем , чтобы получить .Если нужно было сложить
и , и умножить сумму на , то пришлось бы использовать скобки, как в математике:u = (10 + 10) * 5 print(u)
Вывод
Оператор «=» присваивает значение, расположенное справа, переменной слева. Например, v = 23 присваивает значение числа 23 переменной v.
В программировании часто используют составные операторы присваивания. Они соединяют арифметический оператор с оператором «=». Поэтому для сложения мы используем оператор «+» с оператором «=», чтобы получить составной оператор «+=». Пример:
Вывод
Сначала мы задаём переменной
значение . Затем используем составной оператор присваивания , чтобы прибавить число справа, к переменной, расположенной слева, и присвоить результат переменной .Составные операторы присваивания часто используются в циклах for:
for x in range (0, 7): x *= 2 print(x)
Вывод
При помощи for можно автоматизировать процесс использования оператора «
. Он умножает переменную на число , а затем присваивает полученный результат переменной для следующей итерации цикла.В Python предусмотрен составной оператор присваивания для каждой арифметической операции:
y += 1 # добавить число и присвоить результат y -= 1 # отнять число и присвоить результат y *= 2 # умножить на число и присвоить результат y /= 3 # разделить на число и присвоить результат y // = 5 # разделить без остатка на число и присвоить результат y **= 2 # возвести в степень и присвоить результат y %= 3 # вернуть остаток от деления и присвоить результат
Составные операторы присваивания полезны в тех случаях, когда переменная должна увеличиваться или уменьшаться с помощью инкремента. А также когда необходимо автоматизировать некоторый процесс в создаваемой программе.
В этой статье рассмотрены операторы, которые используются для математических операций с целыми и дробными десятичными числами.
Данная публикация представляет собой перевод статьи «How To Do Math in Python 3 with Operators» , подготовленной дружной командой проекта Интернет-технологии.ру
www.internet-technologies.ru
Числа в Python
В программировании мы всегда взаимодействуем с данными, которые не являются какой-то абстрактной субстанцией. Все данные разделяются по определенному типу. На предыдущих уроках мы узнали, про строки, списки, словари и о логическом типе данных. Сегодня, поговорим о самом базовом типе данных в Python — числах.
Почему нельзя свалить все данные в одну общую кучу и не заморачиваться с каждым типом по отдельности? Допустим, мы присвоили переменной a цифру 5: a = 5. А теперь представьте, что никакого разделения по типу данных нет. Так что находится в переменной: число или строка? Если 10 — это число, то с ним можно произвести математические действия. А если это строка, то мы имеем дело с текстом и тогда Python задействует совсем другие методы.
# объединение строк (конкатенация)
d = '10'
f = 'негритят'
d + ' ' + f
'10 негритят'
Ключевой момент: У каждого типа данных свои методы.
Цифра 100 написанная без кавычек, относится к числовому типу данных. А цифра ‘100’ в кавычках — к строковому типу. С помощью синтаксиса, мы сообщаем Python, какой у нас тип данных. Числа в Python делятся на два вида: целое число и вещественное.
Целое число
К целым числам (int) относятся все положительные и отрицательные числа без дробной части. Все положительные целые числа называются натуральными.
-80, -10, -4, 0, 1, 2, 20
Вещественное число
У вещественных чисел (float) всегда присутствует дробная часть, а ещё их называют числами с плавающей точкой. Поскольку дробная часть отделяется от целой части, точкой.
-5.2, -3.1, 7.8, 9.33
Математические операции с числами
Ради математических вычислений в Python и существует числовой тип данных.
Сложение чисел
e = 45 + 55
print(e)
100j = 4.5 + 5
print(j)
9.5
Вычитание чисел
z = 15 - 4
print(z)
11
Умножение чисел
i = 3 * 2
print(i)
6
Деление чисел
У результата деления целого числа на целое, всегда будет дробная часть. Такая особенность обусловлена тем, что в большинстве случаев числа не делятся без остатка.
k = 9/3
print(k)
3.0
Целочисленное деление
В результате целочисленного деления, всегда будет целое число. Мы просто отбрасываем остаток. Число 15 поместится целых 2 раза.
m = 40 // 15
print(m)
2
Остаток от деления
Ответом будет остаток от деления. При обычном делении, ответ был бы 15.1. Но нам нужен только остаток. Убираем целое число и оставляем 1.
n = 16 % 3
print(n)
1o = 12 % 3
print(4)
0
Возведение числа в степень
Число перед двумя звездочками — это объект, который нужно возвести в степень. Цифра после звездочек обозначает, в какую степень возводим: 4 возводим во вторую степень.
l = 4 ** 2
print(l)
16
В Python есть встроенные математические функции.
Модуль числа
Функция abs() находит модуль числа. Передаем в параметрах одно значение. Если передаваемое значение отрицательное, то abs() вернет положительное число. Модуль числа не может быть отрицательным.
>>> abs(-5)
5
>>> abs(5)
5
Наименьшее число
Функция min() в Python возвращает самое маленькое число.
>>> min(1,8,9)
1
Максимальное число
Функция max() вернет самое большое число.
>>> max(25, 8, 57)
57
Округление до целого числа
Функция round() округляет до целого числа.
>>> round(2.33)
2
>>> round(4.5)
4
Вывести число в Python
Функция print() выводит числа на экран.
print(2,3,4)
2 3 4
Ввести число в Python
Функция input() считывает вводимое значение пользователем в консоль и сохраняет его в переменной. Но что произойдет, если мы введем какое-нибудь число и затем обратимся к переменной?
>>> r = input()
33
>>> r
'33' # это строка
Python вывел строку, так как число стоит в кавычках.
Для ввода целого числа, следует обернуть функцию input() в другую функцию int().
>>> s = int(input())
22
>>> s
22
Для вещественного числа, соответственно в float().
>>> s
t = float(input())
11.9
>>> t
11.9
Как посчитать сумму введенных чисел?
В команде input() можно передавать подсказки.
w = int(input("Введите первое число: "))
q = int(input("Введите второе число: "))
summa=w+q
print(summa)Введите первое число: 6
Введите второе число: 7
13
- Создано 06.11.2019 10:26:16
- Михаил Русаков
Копирование материалов разрешается только с указанием автора (Михаил Русаков) и индексируемой прямой ссылкой на сайт (http://myrusakov.ru)!
Добавляйтесь ко мне в друзья ВКонтакте: http://vk.com/myrusakov.
Если Вы хотите дать оценку мне и моей работе, то напишите её в моей группе: http://vk.com/rusakovmy.
Если Вы не хотите пропустить новые материалы на сайте,
то Вы можете подписаться на обновления: Подписаться на обновления
Если у Вас остались какие-либо вопросы, либо у Вас есть желание высказаться по поводу этой статьи, то Вы можете оставить свой комментарий внизу страницы.
Если Вам понравился сайт, то разместите ссылку на него (у себя на сайте, на форуме, в контакте):
myrusakov.ru
Математические операции в Python: как вывести дробную часть и работать с числами
Python → Полезные материалы по PythonТеги: python, int, программирование на python, функции, операции, число, целые числа, возведение в степень, вывести дробную часть, комплексные числа, вещественные числа
Представление чисел в Python 3 не отличается от обычных математических чисел. И поддерживают такие числа самые обыкновенные операции: сложение, вычитание, умножение, деление, возведение в степень, получение дробной части и т. п.
Целые числа (int)
Ниже вы можете увидеть стандартные Python-операции, в которых используется целое число (int):
a + b | Складываем |
a — b | Вычитаем |
a * b | Умножаем |
a / b | Делим |
a // b | Можем вывести целую часть от деления |
a % b | Можем вывести остаток от деления |
-a | Меняем знак числа |
abs(x) | Можем вывести модуль числа x |
divmod(a, b) | Пара (a // b, a % b) |
a ** b | Операция для возведения в степень |
pow(a, b[, x]) | ab по модулю (в случае, если модуль задан) |
Кроме того, числа int в Python 3 поддерживают длинную арифметику в отличие от некоторых других языков программирования. Однако для этого требуется больше памяти.
Битовые операции
Над числами int в Python можно выполнять и битовые операции. К примеру, a | b — это побитовое «или». Есть и другие варианты:
a ^ b | Побитовое исключающее или |
a & b | Побитовое и |
a << b | Сдвиг влево |
a >> b | Сдвиг вправо |
~a | Инверсия битов |
Дополнительные методы и операции в Python
В эти операции входят: • int.bit_length() — количество бит, которое необходимо, чтобы представить число в двоичном виде без учёта лидирующих нулей и знака; • int.to_bytes(length, byteorder, *, signed=False) — метод возвращает строку байтов, которые представляют это число; • classmethod int.from_bytes(bytes, byteorder, *, signed=False) — возвращение числа из заданной строки байтов.
Пример работы последнего метода:
>>> >>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680
Операции с системами счисления
Как гласит математика и информатика, числа можно представить как в десятичной, так и в двоичной системе счисления. Допустим, число 19 в двоичной системе имеет вид 10011. Также можно переводить числа из одной системы в другую. В Python для этого есть ряд функций: • int([object], [основание системы счисления]) — функция нужна для преобразования к целому числу. По умолчанию речь идёт о десятичной системе, однако можно задать любое основание в пределах чисел 2-36. • bin(x) — функция для преобразования целого числа в двоичную строку; • hex(х) — аналогично, но действительное целое число преобразуется в шестнадцатеричную строку; • oct(х) — для преобразования чисел в восьмеричную строку.
Пример:
>>> >>> a = int('19') # Строка переводится в число >>> b = int('19.5') # Строка не является числом Traceback (most recent call last): File "", line 1, in ValueError: invalid literal for int() with base 10: '19.5' >>> c = int(19.5) # Отсекает дробную часть, если применена к числу с плавающей точкой >>> print(a, c) 19 19 >>> bin(19) '0b10011' >>> oct(19) '0o23' >>> hex(19) '0x13' >>> 0b10011 # Вариант записи числовых констант 19 >>> int('10011', 2) 19 >>> int('0b10011', 2) 19
Операции с вещественными числами (float)
Чтобы вывести дробную часть, в Python используют вещественные числа. Они поддерживают выполнение тех же операций, что и в случае с int. Но из-за особенностей их представления в компьютере, когда выводишь дробную часть, возможны неточности и даже ошибки:
>>> >>> 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 0.9999999999999999
Для повышения точности операций используются такие объекты, как Decimal и Fraction.
Вспомогательные методы
К ним относят:
• float.as_integer_ratio() — это пара целых чисел int, отношение которых равно этому числу;
• float.is_integer() — функция определят, является ли данное значение целым числом;
• float.hex() — функция переводит float в 16-тиричную систему счисления, то есть в hex;
• classmethod float.fromhex(s) — функцию используют для получения float из 16-тиричной строки.
Кроме стандартных выражений, в Python есть и специальные полезные модули. Например, модуль math позволяет выполнять более сложные арифметические функции:
>>> >>> import math >>> math.pi 3.141592653589793 >>> math.sqrt(85) 9.219544457292887
А вот модуль random запускает генератор случайных чисел, позволяя реализовать функции случайного выбора:
>>> >>> import random >>> random.random() 0.75849839767373282
Комплексные числа в Python (complex)
Также в Python встроены комплексные числа:
>>> >>> x = complex(1, 2) >>> print(x) (1+2j) >>> y = complex(3, 4) >>> print(y) (3+4j) >>> z = x + y >>> print(x) (1+2j) >>> print(z) (4+6j) >>> z = x * y >>> print(z) (-5+10j) >>> z = x / y >>> print(z) (0.44+0.08j) >>> print(x.conjugate()) # Сопряжённое число (1-2j) >>> print(x.imag) # Мнимая часть 2.0 >>> print(x.real) # Действительная часть 1.0 >>> print(x > y) # Числа нельзя сравнить Traceback (most recent call last): File "", line 1, in TypeError: unorderable types: complex() > complex() >>> print(x == y) # Однако можно проверить их на равенство False >>> abs(3 + 4j) # Модуль 5.0 >>> pow(3 + 4j, 2) # Возведение в степень, получение значения степени (-7+24j)
Кроме того, для работы с complex может применяться модуль cmath.
На этом пока что всё. Следите за новостями и не забывайте оставлять свои комментарии!
otus.ru
Интерактивный учебник языка Python
1. Целочисленная арифметика
Для целых чисел определены операции +
, -
, *
и **
. Операция
деления /
для целых чисел возвращает вещественное число (значение типа float
).
Также функция возведения в степень возвращает значение типа float
,
если показатель степени — отрицательное число.
Но есть и специальная операция целочисленного деления, выполняющегося с отбрасыванием
дробной части, которая обозначается //
(она соответствует операции div
в Паскале).
Она возвращает целое число: целую часть частного. Другая близкая ей операция − это операция взятия остатка от деления,
обозначаемая %
(она соответствует операции mod
в Паскале).
Например:
print(17 / 3) # выведет 5.66666666667 print(17 // 3) # выведет 5 print(17 % 3) # выведет 2
2. Действительные числа
В этом разделе речь пойдет о действительных числах, имеющих тип float
.
Обратите внимание, что если вы хотите считать с клавиатуры действительное
число, то результат, возращаемый функцией input()
необходимо
преобразовывать к типу float
:
1.492
x = float(input()) print(x)
Действительные (вещественные) числа представляются в виде чисел с десятичной точкой (а не запятой, как принято при записи десятичных дробей в русских текстах). Для записи очень больших или очень маленьких по модулю чисел используется так называемая запись «с плавающей точкой» (также называемая «научная» запись). В этом случае число представляется в виде некоторой десятичной дроби, называемой мантиссой, умноженной на целочисленную степень десяти (порядок). Например, расстояние от Земли до Солнца равно 1.496·1011, а масса молекулы воды 2.99·10-23.
Числа с плавающей точкой в программах на языке Питон, а также при вводе и выводе записываются так:
сначала пишется мантисса, затем пишется буква e
, затем пишется порядок. Пробелы внутри этой
записи не ставятся. Например, указанные выше константы можно записать в виде 1.496e11
и 2.99e-23
. Перед самим числом также может стоять знак минус.
Напомним, что результатом операции деления /
всегда является действительное число (float
),
в то время как результатом операции //
является целое число (int
).
Преобразование действительных чисел к целому производится с округлением
в сторону нуля, то есть int(1.7) == 1
, int(-1.7) == -1
.
3. Библиотека math
Для проведения вычислений с действительными числами язык Питон содержит много
дополнительных функций, собранных в библиотеку (модуль), которая называется math
.
Для использования этих функций в начале программы необходимо подключить математическую библиотеку, что делается командой
import math
Например, пусть мы хотим округлять вещественные числа до ближайшего целого числа вверх.
Соответствующая функция ceil
от одного аргумента вызывается, например, так: math.ceil(x)
(то есть явно указывается, что из модуля math
используется функция ceil
).
Вместо числа x
может быть любое число, переменная или выражение.
Функция возращает значение, которое можно вывести на экран, присвоить
другой переменной или использовать в выражении:
import math x = math.ceil(4.2) y = math.ceil(4.8) print(x) print(y)
Другой способ использовать функции из библиотеки math
, при котором не нужно будет
при каждом использовании функции из модуля math
указывать название
этого модуля, выглядит так:
from math import ceil x = 7 / 2 y = ceil(x) print(y)или так:
pythontutor.ru