Содержание

Что означает RGB и где применяется?

Если вы когда-либо использовали игровой компьютер, телевизор или камеру, вы не можете не встретить термин RGB. Вы хотите знать, что означает RGB, для чего он используется или почему вы так часто слышите о RGB, когда речь идет о компьютерах, гаджетах или дисплеях? Мы здесь, чтобы сделать все это немного более понятным, поэтому, если вы хотите узнать, что такое RGB, каковы наиболее распространенные способы его использования и почему, прочитайте эту статью.

RGB — это сокращение от «Red Green Blue», и, как вы уже догадались, оно относится к цветам и их составу. Вы можете спросить, почему красный, зеленый и синий? Ответ в том, что красный, зеленый и синий являются основными цветами, которые вы можете комбинировать в различных количествах, чтобы получить любой другой цвет из видимого спектра, который может видеть человеческий глаз.

RGB — это аддитивная цветовая модель. Другими словами, чтобы получить другие цвета, вы смешиваете основной красный, зеленый и синий цвета. Если вы смешаете все три цвета с максимальной интенсивностью (100%), вы получите белый цвет. С другой стороны, если вы смешаете их все с минимальной интенсивностью (0%), вы получите черный цвет.

Другими словами, смешивая равные части 100% красного, зеленого и синего, вы получите свет, а если вы смешаете 0% красного, зеленого и синего, вы получите темноту.

RGB также может рассматриваться как противоположность CMY, что означает «Cyan Magenta Yellow». Почему наоборот? Поскольку CMY как цветовая модель, является противоположностью RGB: объединение голубого, пурпурного и желтого при максимальной интенсивности 100% дает вам черный цвет, а минимальная интенсивность 0% дает белый.

Способы использования RGB

Прежде всего, цветовая модель RGB используется в устройствах, использующих цвет . Из-за того, что это аддитивная цветовая модель, которая выдает более светлые цвета, когда три основных смешанных цвета (красный, зеленый, синий) являются более насыщенными, RGB лучше всего подходит для отображения излучающего изображения. Другими словами, цветовая модель RGB лучше всего подходит для экран

История цветовой модели RGB / Хабр

Я собираюсь совершить экскурс в историю науки о человеческом восприятии, которая привела к созданию современных видеостандартов. Также я попытаюсь объяснить часто используемую терминологию. Кроме того, я вкратце расскажу, почему типичный процесс создания игры со временем будет всё больше и больше напоминать процесс, используемый в киноиндустрии.

Пионеры исследований цветовосприятия


Сегодня мы знаем, что сетчатка человеческого глаза содержит три разных типа фоторецепторных клеток, называемых колбочками. Каждый из трёх типов колбочек содержит белок из семейства белков опсинов, который поглощает свет в различных частях спектра:
Поглощение света опсинами

Колбочки соответствуют красной, зелёной и синей частям спектра и часто называются длинными (L), средними (M) и короткими (S) согласно длинам волн, к которым они наиболее чувствительны.

Одной из первых научных работ о взаимодействии света и сетчатки был трактат «Hypothesis Concerning Light and Colors» Исаака Ньютона, написанный между 1670-1675 гг. У Ньютона была теория, что свет с различными длинами волн приводил к резонансу сетчатки с теми же частотами; эти колебания затем передавались через оптический нерв в «сенсориум».


«Лучи света, падая на дно глаза, возбуждают колебания в сетчатке, которые распространяются по волокнам оптических нервов в мозг, создавая чувство зрения. Разные типы лучей создают колебания разной силы, которые согласно своей силе возбуждают ощущения разных цветов…»

(Рекомендую вам обязательно прочитать отсканированные черновики Ньютона на веб-сайте Кембриджского университета. Я, конечно, констатирую очевидное, но каким же он был гением!)

Больше чем через сотню лет Томас Юнг пришёл к выводу, что так как частота резонанса — это свойство, зависящее от системы, то чтобы поглотить свет всех частот, в сетчатке должно быть бесконечное количество разных резонансных систем. Юнг посчитал это маловероятным, и рассудил, что количество ограничено одной системой для красного, жёлтого и синего. Эти цвета традиционно использовались в субтрактивном смешивании красок. По его собственным словам:

Поскольку по причинам, указанным Ньютоном, возможно, что движение сетчатки имеет скорее колебательную, чем волновую природу, частота колебаний должна зависеть от строения её вещества. Так как почти невозможно полагать, что каждая чувствительная точка сетчатки содержит бесконечное количество частиц, каждая из которых способна колебаться в идеальном согласии с любой возможной волной, становится необходимым предположить, что количество ограничено, например, тремя основными цветами: красным, жёлтым и синим…
Предположение Юнга относительно сетчатки было неверным, но он сделал правильный вывод: в глазе существует конечное количество типов клеток.

В 1850 году Герман Гельмгольц первым получил экспериментальное доказательство теории Юнга. Гельмгольц попросил испытуемого сопоставить цвета различных образцов источников света, регулируя яркость нескольких монохромных источников света. Он пришёл к выводу, что для сопоставления всех образцов необходимо и достаточно трёх источников света: в красной, зелёной и синей части спектра.

Рождение современной колориметрии


Перенесёмся в начало 1930-х. К тому времени научное сообщество имело достаточно хорошее представление о внутренней работе глаза. (Хотя потребовалось ещё 20 лет, чтобы Джорджу Уолду удалось экспериментально подтвердить присутствие и функции родопсинов в колбочках сетчатки. Это открытие привело его к Нобелевской премии по медицине в 1967 году.) Commission Internationale de L’Eclairage (Меж­ду­на­род­ная комиссия по освещению), CIE, поставила задачу по созданию исчерпывающей количественной оценки восприятия цвета человеком. Количественная оценка была основана на экспериментальных данных, собранных Уильямом Дэвидом Райтом и Джоном Гилдом при параметрах, схожих с выбранными впервые Германом Гельмгольцем. Базовыми настройками были выбраны 435,8 нм для синего цвета, 546,1 нм для зелёного и 700 нм для красного.
Экспериментальная установка Джона Гилда, три ручки регулируют основные цвета

Из-за значительного наложения чувствительности колбочек M и L невозможно было сопоставить некоторые длины волн с сине-зелёной частью спектра. Для «сопоставления» этих цветов в качестве точки отсчёта нужно было добавить немного основного красного цвета:

Если мы на мгновение представим, что все основные цвета вносят отрицательный вклад, то уравнение можно переписать так:

Результатом экспериментов стала таблица RGB-триад для каждой длины волны, что отображалось на графике следующим образом:


Функции сопоставления цветов RGB по CIE 1931

Разумеется, цвета с отрицательным красным компонентом невозможно отобразить с помощью основных цветов CIE.

Теперь мы можем найти трихромные коэффициенты для света распределения спектральной интенсивности S как следующее внутреннее произведение:

Может казаться очевидным, что чувствительность к различным длинам волн можно проинтегрировать таким образом, но на самом деле она зависит от физической чувствительности глаза, линейной по отношению к чувствительности к длинам волн. Это было эмпирически подтверждено в 1853 году Германом Грассманом, и представленные выше интегралы в современной формулировке известны нам как закон Грассмана.

Термин «цветовое пространство» возник потому, что основные цвета (красный, зелёный и синий) можно считать базисом векторного пространства. В этом пространстве различные цвета, воспринимаемые человеком, представлены лучами, исходящими из источника. Современное определение векторного пространства введено в 1888 году Джузеппе Пеано, но более чем за 30 лет до этого Джеймс Клерк Максвелл уже использовал только зародившиеся теории того, что позже стало линейной алгеброй, для формального описания трихроматической цветовой системы.

CIE решила, что для упрощения вычислений будет более удобно работать с цветовым пространством, в которой коэффициенты основных цветов всегда положительны. Три новых основных цвета выражались в координатах цветового пространства RGB следующим образом:

Этот новый набор основных цветов невозможно реализовать в физическом мире. Это просто математический инструмент, упрощающий работу с цветовым пространством. Кроме того, чтобы коэффициенты основных цветов всегда были положительными, новое пространство скомпоновано таким образом, что коэффициент цвета Y соответствует воспринимаемой яркости. Этот компонент известен как

яркость CIE (подробнее о ней можно почитать в замечательной статье Color FAQ Чарльза Пойнтона (Charles Poynton)).

Чтобы упростить визуализацию итогового цветового пространства, мы выполним последнее преобразование. Разделив каждый компонент на сумму компонентов мы получим безразмерную величину цвета, не зависящую от его яркости:

Координаты x и y известны как координаты цветности, и вместе с яркостью Y CIE они составляют цветовое пространство xyY CIE. Если мы расположим на графике координаты цветности всех цветов с заданной яркостью, у нас получится следующая диаграмма, которая вам наверно знакома:


Диаграмма xyY CIE 1931

И последнее, что нужно узнать — что считается белым цветом цветового пространства. В такой системе отображения белый цвет — это координаты x и y цвета, которые получаются, когда все коэффициенты основных цветов RGB равны между собой.

С течением времени появилось несколько новых цветовых пространств, которые в различных аспектах вносили улучшения в пространства CIE 1931. Несмотря на это, система xyY CIE остаётся самым популярным цветовым пространством, описывающим свойства устройств отображения.

Передаточные функции


Прежде чем рассматривать видеостандарты, необходимо ввести и объяснить ещё две концепции.
Оптико-электронная передаточная функция

Оптико-электронная передаточная функция (optical-electronic transfer function, OETF) определяет то, как линейный свет, фиксируемый устройством (камерой) должен кодироваться в сигнале, т.е. это функция формы:

Раньше V был аналоговым сигналом, но сейчас, разумеется, он имеет цифровое кодирование. Обычно разработчики игр редко сталкиваются с OETF. Один из примеров, в котором функция будет важна: необходимость сочетания в игре видеозаписи с компьютерной графикой. В этом случае необходимо знать, с какой OETF было записано видео, чтобы восстановить линейный свет и правильно смешать его с компьютерным изображением.

Электронно-оптическая передаточная функция

Электронно-оптическая передаточная функция (electronic-optical transfer, EOTF) выполняет противоположную OETF задачу, т.е. она определяет, как сигнал будет преобразован в линейный свет:

Эта функция более важна для разработчиков игр, потому что она определяет, как созданный ими контент будет отображаться экранах телевизоров и мониторов пользователей.

Отношение между EOTF и OETF

Понятия EOTF и OETF хоть и взаимосвязаны, но служат разным целям. OETF нужна для представления захваченной сцены, из которого мы потом можем реконструировать исходное линейное освещение (это представление концептуально является буфером кадра HDR (High Dynamic Range) обычной игры). Что происходит на этапах производства обычного фильма:
  • Захват данных сцены
  • Инвертирование OETF для восстановления значений линейного освещения
  • Цветокоррекция
  • Мастеринг под различные целевые форматы (DCI-P3, Rec. 709, HDR10, Dolby Vision и т.д.):
    • Уменьшение динамического диапазона материала для соответствия динамическому диапазону целевого формата (тональная компрессия)
    • Преобразование в цветовой пространство целевого формата
    • Инвертирование EOTF для материала (при использовании EOTF в устройстве отображения изображение восстанавливается как нужно).

Подробное обсуждение этого техпроцесса не войдёт в нашу статью, но я рекомендую изучить подробное формализованное описание рабочего процесса ACES (Academy Color Encoding System).

До текущего момента стандартный техпроцесс игры выглядел следующим образом:

  • Рендеринг
  • Буфер кадра HDR
  • Тональная коррекция
  • Инвертирование EOTF для предполагаемого устройства отображения (обычно sRGB)
  • Цветокоррекция

В большинстве игровых движков используется метод цветокоррекции, популяризованный презентацией Нэти Хофмана (Naty Hoffman) «Color Enhancement for Videogames» с Siggraph 2010. Этот метод был практичен, когда использовался только целевой SDR (Standard Dynamic Range), и он позволял использовать для цветокоррекции ПО, уже установленное на компьютерах большинства художников, например Adobe Photoshop.
Стандартный рабочий процесс цветокоррекции SDR (изображение принадлежит Джонатану Блоу (Jonathan Blow))

После внедрения HDR большинство игр начало двигаться к техпроцессу, похожему на используемый в производстве фильмов. Даже при отсутствии HDR схожий с кинематографическим техпроцесс позволял оптимизировать работу. Выполнение цветокоррекции в HDR означает, что у вас есть целый динамический диапазон сцены. Кроме того, становятся возможными некоторые эффекты, которые раньше были недоступны.

Теперь мы готовы рассмотреть различные стандарты, используемые в настоящее время для описания форматов телевизоров.

Видеостандарты


Rec. 709

Большинство стандартов, относящихся к вещанию видеосигналов, выпущено Меж­ду­на­род­ным союзом элект­рос­вя­зи (International Telecommunication Union, ITU), органом ООН, в основном занимающимся информационными технологиями.

Рекомендация ITU-R BT.709, которую чаще называют Rec. 709 — это стандарт, описывающий свойства HDTV. Первая версия стандарта была выпущена в 1990 году, последняя — в июне 2015 года. В стандарте описываются такие параметры, как соотношения сторон, разрешения, частота кадров. С этими характеристиками знакомо большинство людей, поэтому я не буду рассматривать их и сосредоточусь на разделах стандарта, касающихся воспроизведения цвета и яркости.

В стандарте подробно описана цветность, ограниченная цветовым пространством xyY CIE. Красный, зелёный и синий источники освещения соответствующего стандарту дисплея должны быть выбраны таким образом, чтобы их отдельные координаты цветности были следующими:

Их относительная интенсивность должна быть настроена таким образом, чтобы белая точка имела цветность

(Эта белая точка также известна как CIE Standard Illuminant D65 и аналогична захвату координат цветности распределения спектральной интенсивности обычного дневного освещения.)

Свойства цветности можно визуально представить следующим образом:


Охват Rec. 709

Область схемы цветности, ограниченная треугольником, созданным основными цветами заданной системы отображения, называется охватом.

Теперь мы переходим к части стандарта, посвящённой яркости, и здесь всё становится немного сложнее. В стандарте указано, что «Общая оптико-электронная передаточная характеристика в источнике» равна:

Здесь есть две проблемы:

  1. Не существует спецификации о том, чему соответствует физическая яркость L = 1
  2. Несмотря на то, что это стандарт вещания видео, в нём не указана EOTF

Так получилось исторически, потому что считалось, что устройство отображения, т.е. телевизор потребителя и есть EOTF. На практике это осуществлялось корректировкой диапазона захваченной яркости в вышеприведённой OETF, чтобы изображение выглядело хорошо на эталонном мониторе со следующей EOTF:

где L = 1 соответствует яркость примерно 100 кд / м² (единицу кд / м² в этой отрасли называют «нит»). Это подтверждается ITU в последних версиях стандарта следующим комментарием:

В стандартной производственной практике функция кодирования источников изображения регулируется таким образом, чтобы конечное изображение имело требуемый вид, соответствующий видимому на эталонном мониторе. В качестве эталонной принимается функция декодирования из Рекомендации ITU-R BT.1886. Эталонная среда просмотра указана в Рекомендации ITU-R BT.2035.
Rec. 1886 — это результат работ по документации характеристик ЭЛТ-мониторов (стандарт опубликован в 2011 году), т.е. является формализацией существующей практики.
Кладбище слонов ЭЛТ

Нелинейность яркости как функции приложенного напряжения привела к тому, как физически устроены ЭЛТ-мониторы. По чистой случайности эта нелинейность (очень) приблизительно является инвертированной нелинейностью восприятия яркости человеком. Когда мы перешли к цифровому представлению сигналов, это привело к удачному эффекту равномерного распределения ошибки дискретизации по всему диапазону яркости.

Rec. 709 рассчитана на использование 8-битного или 10-битного кодирования. В большинстве контента используется 8-битное кодирование. Для него в стандарте указано, что распределение диапазона яркости сигнала должно распределяться в кодах 16-235.

HDR10


Что касается HDR-видео, то в нём есть два основных соперника: Dolby Vision и HDR10. В этой статье я сосредоточусь на HDR10, потому что это открытый стандарт, который быстрее стал популярным. Этот стандарт выбран для Xbox One S и PS4.

Мы снова начнём с рассмотрения используемой в HDR10 части цветности цветового пространства, определённой в Рекомендации ITU-R BT.2020 (UHDTV). В ней указаны следующие координаты цветности основных цветов:

И снова в качестве белой точки используется D65. При визуализации на схеме xy Rec. 2020 выглядит следующим образом:


Охват Rec. 2020

Очевидно заметно, что охват этого цветового пространства значительно больше, чем у Rec. 709.

Теперь мы переходим к разделу стандарта о яркости, и здесь снова всё становится более интересным. В своей кандидатской диссертации 1999 года “Contrast sensitivity of the human eye and its effect on image quality” («Контрастная чувствительность человеческого глаза и её влияние на качество изображения») Питер Бартен представил немного пугающее уравнение:

(Многие переменные этого уравнения сами по себе являются сложными уравнениями, например, яркость скрывается внутри уравнений, вычисляющих E и M).

Уравнение определяет, насколько чувствителен глаз к изменению контрастности при различной яркости, а различные параметры определяют условия просмотра и некоторые свойства наблюдателя. «Минимальная различаемая разница» (Just Noticeable Difference, JND) обратна уравнению Бартена, поэтому для дискретизации EOTF, чтобы избавиться от привязки к условиям просмотра, должно быть верно следующее:

Общество инженеров кино и телевидения (Society of Motion Picture and Television Engineers, SMPTE) решило, что уравнение Бартена будет хорошей основой для новой EOTF. Результатом стало то, что мы сейчас называем SMPTE ST 2084 или Perceptual Quantizer (PQ).

PQ был создан выбором консервативных значений для параметров уравнения Бартена, т.е. ожидаемых типичных условий просмотра потребителем. Позже PQ был определён как дискретизация, которая при заданном диапазоне яркости и количестве сэмплов наиболее точно соответствует уравнению Бартена с выбранными параметрами.

Дискретизированные значения EOTF можно найти с помощью следующей рекуррентной формулы нахождения k < 1. Последним значением дискретизации будет являться необходимая максимальная яркость:

Для максимальной яркости в 10 000 нит с использованием 12-битной дискретизации (которая используется в Dolby Vision) результат выглядит следующим образом:


EOTF PQ

Как можно заметить, дискретизация не занимает весь диапазон яркости.

В стандарте HDR10 тоже используется EOTF PQ, но с 10-битной дискретизацией. Этого недостаточно, чтобы оставаться ниже порога Бартена в диапазоне яркости в 10 000 нит, но стандарт позволяет встраивать в сигнал метаданные для динамической регуляции пиковой яркости. Вот как 10-битная дискретизация PQ выглядит для разных диапазонов яркости:


Разные EOTF HDR10

Но даже так яркость немного выше порога Бартена. Однако ситуация не настолько плоха, как это может показаться из графика, потому что:

  1. Кривая логарифмическая, поэтому относительная погрешность на самом деле не так велика
  2. Не стоит забывать, что параметры, взятые для создания порога Бартена, выбраны консервативно.

На момент написания статьи телевизоры с HDR10, представленные на рынке, обычно имеют пиковую яркость 1000-1500 нит, и для них достаточно 10 бит. Стоит также заметить, что изготовители телевизоров могут сами решать, что им делать с яркостями выше диапазона, который они могут отображать. Некоторые придерживаются подхода с жёсткой обрезкой, другие — с более мягкой.

Вот пример того, как выглядит 8-битная дискретизация Rec. 709 с пиковой яркостью 100 нит:


EOTF Rec. 709 (16-235)

Как можно видеть, мы намного выше порога Бартена, и, что важно, даже самые неразборчивые покупатели будут настраивать свои телевизоры на значительно большие 100 нит пиковые яркости (обычно на 250-400 нит), что поднимет кривую Rec. 709 ещё выше.

В заключение


Одно из самых больших различий между Rec. 709 и HDR в том, что яркость последнего указывается в абсолютных значениях. Теоретически это означает, что контент, предназначенный для HDR, будет выглядеть одинаково на всех совместимых телевизорах. По крайней мере, до их пиковой яркости.

Существует популярное заблуждение, что HDR-контент в целом будет ярче, но в общем случае это не так. HDR-фильмы чаще всего будут изготавливаться таким образом, чтобы средний уровень яркости изображения был тем же, что и для Rec. 709, но так, чтобы самые яркие участки изображения были более яркими и детальными, а значит, средние тона и тени будут более тёмными. В сочетании с абсолютными значениями яркости HDR это означает, что для оптимального просмотра HDR нужны хорошие условия: при ярком освещении зрачок сужается, а значит, детали на тёмных участках изображения будет сложнее разглядеть.

О цветовых пространствах / Хабр

Я по образованию программист, но по работе мне пришлось столкнуться с обработкой изображений. И тут для меня открылся удивительный и неизведанный мир цветовых пространств. Не думаю, что дизайнеры и фотографы узнают для себя что-то новое, но, возможно, кому-нибудь это знание окажется, как минимум полезно, а в лучшем случае интересно.

Основная задача цветовых моделей – сделать возможным задание цветов унифицированным образом. По сути цветовые модели задают определённые системы координат, которые позволяют однозначно определить цвет.

Наиболее популярными на сегодняшний день являются следующие цветовые модели: RGB (используется в основном в мониторах и камерах), CMY(K) (используется в полиграфии), HSI (широко используется в машинном зрении и дизайне). Существует множество других моделей. Например, CIE XYZ (стандартные модели), YCbCr и др. Далее дан краткий обзор этих цветовых моделей.

Цветовой куб RGB

Из закона Грассмана возникает идея аддитивной (т.е. основанной на смешении цветов от непосредственно излучающих объектов) модели цветовоспроизведения. Впервые подобная модель была предложена Джеймсом Максвеллом в 1861 году, но наибольшее распространение она получила значительно позже.

В модели RGB (от англ. red – красный, green – зелёный, blue – голубой) все цвета получаются путём смешения трёх базовых (красного, зелёного и синего) цветов в различных пропорциях. Доля каждого базового цвета в итоговом может восприниматься, как координата в соответствующем трёхмерном пространстве, поэтому данную модель часто называют цветовым кубом. На Рис. 1 представлена модель цветового куба.

Чаще всего модель строится так, чтобы куб был единичным. Точки, соответствующие базовым цветам, расположены в вершинах куба, лежащих на осях: красный – (1;0;0), зелёный – (0;1;0), синий – (0;0;1). При этом вторичные цвета (полученные смешением двух базовых) расположены в других вершинах куба: голубой — (0;1;1), пурпурный — (1;0;1) и жёлтый – (1;1;0). Чёрный и белые цвета расположены в начале координат (0;0;0) и наиболее удалённой от начала координат точке (1;1;1). Рис. показывает только вершины куба.

Цветные изображения в модели RGB строятся из трёх отдельных изображений-каналов. В Табл. показано разложение исходного изображения на цветовые каналы.

В модели RGB для каждой составляющей цвета отводится определённое количество бит, например, если для кодирования каждой составляющей отводить 1 байт, то с помощью этой модели можно закодировать 2^(3*8)≈16 млн. цветов. На практике такое кодирование избыточно, т.к. большинство людей не способно различить такое количество цветов. Часто ограничиваются т.н. режимом «High Color» в котором на кодирование каждой компоненты отводится 5 бит. В некоторых приложениях используют 16-битный режим в котором на кодирование R и B составляющих отводится по 5 бит, а на кодирование G составляющей 6 бит. Этот режим, во-первых, учитывает более высокую чувствительность человека к зелёному цвету, а во-вторых, позволяет более эффективно использовать особенности архитектуры ЭВМ. Количество бит, отводимых на кодирование одного пиксела называется глубиной цвета. В Табл. приведены примеры кодирования одного и того же изображения с разной глубиной цвета.

Субтрактивные модели CMY и CMYK

Субтрактивная модель CMY (от англ. cyan — голубой, magenta — пурпурный, yellow — жёлтый) используется для получения твёрдых копий (печати) изображений, и в некотором роде является антиподом цветового RGB-куба. Если в RGB модели базовые цвета – это цвета источников света, то модель CMY – это модель поглощения цветов.

Например, бумага, покрытая жёлтым красителем не отражает синий свет, т.е. можно сказать, что жёлтый краситель вычитает из отражённого белого света синий. Аналогично голубой краситель вычитает из отражённого света красный, а пурпурный краситель вычитает зелёный. Именно поэтому данную модель принято называть субтрактивной. Алгоритм перевода из модели RGB в модель CMY очень прост:

При этом предполагается, что цвета RGB находятся в интервале [0;1]. Легко заметить, что для получения чёрного цвета в модели CMY необходимо смешать голубой, пурпурный и жёлтый в равных пропорциях. Этот метод имеет два серьёзных недостатка: во-первых, полученный в результате смешения чёрный цвет будет выглядеть светлее «настоящего» чёрного, во-вторых, это приводит к существенным затратам красителя. Поэтому на практике модель СMY расширяют до модели CMYK, добавляя к трём цветам чёрный (англ. black).

Цветовое пространство тон, насыщенность, интенсивность (HSI)

Рассмотренные ранее цветовые модели RGB и CMY(K) весьма просты в плане аппаратной реализации, но у них есть один существенный недостаток. Человеку очень тяжело оперировать цветами, заданными в этих моделях, т.к. человек, описывая цвета, пользуется не содержанием в описываемом цвете базовых составляющих, а несколько иными категориями.

Чаще всего люди оперируют следующими понятиями: цветовой тон, насыщенность и светлота. При этом, говоря о цветовом тоне, обычно имеют в виду именно цвет. Насыщенность показывает насколько описываемый цвет разбавлен белым (розовый, например, это смесь красного и белого). Понятие светлоты наиболее сложно для описания, и с некоторыми допущениями под светлотой можно понимать интенсивность света.

Если рассмотреть проекцию RGB-куба в направлении диагонали белый-чёрный, то получится шестиугольник:

Все серые цвета (лежащие на диагонали куба) при этом проецируются в центральную точку. Чтобы с помощью этой модели можно было закодировать все цвета, доступные в RGB-модели, необходимо добавить вертикальную ось светлоты (или интенсивности) (I). В итоге получается шестигранный конус:

При этом тон (H) задаётся углом относительно оси красного цвета, насыщенность (S) характеризует чистоту цвета (1 означает совершенно чистый цвет, а 0 соответствует оттенку серого). Важно понимать, что тон и насыщенность не определены при нулевой интенсивности.

Алгоритм перевода из RGB в HSI можно выполнить, воспользовавшись следующими формулами:

Цветовая модель HSI очень популярна среди дизайнеров и художников, т.к. в этой системе обеспечивается непосредственный контроль тона, насыщенности и яркости. Эти же свойства делают эту модель очень популярной в системах машинного зрения. В Табл. показано изменение изображения при увеличении и уменьшении интенсивности, тона (выполняется поворот на ±50°) и насыщенности.

Модель CIE XYZ

С целью унификации была разработана международная стандартная цветовая модель. В результате серии экспериментов международная комиссия по освещению (CIE) определила кривые сложения основных (красного, зелёного и синего) цветов. В этой системе каждому видимому цвету соответствует определённое соотношение основных цветов. При этом, для того, чтобы разработанная модель могла отражать все видимые человеком цвета пришлось ввести отрицательное количество базовых цветов. Чтобы уйти от отрицательных значений CIE, ввела т.н. нереальные или мнимые основные цвета: X (мнимый красный), Y (мнимый зелёный), Z (мнимый синий).

При описании цвета значения X,Y,Z называют стандартными основными возбуждениями, а полученные на их основе координаты – стандартными цветовыми координатами. Стандартные кривые сложения X(λ),Y(λ),Z(λ) (см. Рис.) описывают чувствительность среднестатистического наблюдателя к стандартным возбуждениям:

Помимо стандартных цветовых координат часто используют понятие относительных цветовых координат, которые можно вычислить по следующим формулам:

Легко заметить, что x+y+z=1, а это значит, что для однозначного задания относительных координат достаточно любой пары значений, а соответствующее цветовое пространство может быть представлено в виде двумерного графика:

Множество цветов, задаваемое таким способом, называют треугольником CIE.
Легко заметить, что треугольник CIE описывает только цветовой тон, но никак не описывает яркость. Для описания яркости вводят дополнительную ось, проходящую через точку с координатами (1/3;1/3) (т.н. точку белого). В результате получают цветовое тело CIE (см. Рис.):

Это тело содержит все цвета, видимые среднестатистическим наблюдателем. Основным недостатком этой системы является то, что используя её, мы можем констатировать только совпадение или различие двух цветов, но расстояние между двумя точками этого цветового пространства не соответствует зрительному восприятию различия цветов.

Модель CIELAB

Основной целью при разработке CIELAB было устранение нелинейности системы CIE XYZ с точки зрения человеческого восприятия. Под аббревиатурой LAB обычно понимается цветовое пространство CIE L*a*b*, которое на данный момент является международным стандартом.

В системе CIE L*a*b координата L означает светлоту (в диапазоне от 0 до 100), а координаты a,b – означают позицию между зелёным-пурпурным, и синим-жёлтым цветами. Формулы для перевода координат из CIE XYZ в CIE L*a*b* приведены ниже:


где (Xn,Yn,Zn) – координаты точки белого в пространстве CIE XYZ, а


На Рис. представлены срезы цветового тела CIE L*a*b* для двух значений светлоты:

По сравнению с системой CIE XYZ Евклидово расстояние (√((L1-L2 )^2+(a1^*-a2^* )^2+(b1^*-b2^* )^2 )) в системе CIE L*a*b* значительно лучше соответствует цветовому различию, воспринимаемому человеком, тем не менее, стандартной формулой цветового различия является чрезвычайно сложная CIEDE2000.

Телевизионные цветоразностные цветовые системы

В цветовых системах YIQ и YUV информация о цвете представляется в виде сигнала яркости (Y) и двух цветоразностных сигналов (IQ и UV соответственно).

Популярность этих цветовых систем обусловлена в первую очередь появлением цветного телевидения. Т.к. компонента Y по сути содержит исходное изображение в градациях серого, сигнал в системе YIQ мог быть принят и корректно отображён как на старых чёрно-белых телевизорах, так и на новых цветных.

Вторым, возможно более важным плюсом, этих пространств является разделение информации о цвете и яркости изображения. Дело в том, что человеческий глаз весьма чувствителен к изменению яркости, и значительно менее чувствителен к изменению цветности. Это позволяет передавать и хранить информацию о цветности с пониженной глубиной. Именно на этой особенности человеческого глаза построены самые популярные на сегодняшний день алгоритмы сжатия изображений (в т.ч. jpeg). Для перевода из пространства RGB в YIQ можно воспользоваться следующими формулами:

О цвете с самого начала

· Инструмент для подбора цветов и генерации цветовых схем ·

Теория Цвета

Если вы совсем новичок в вопросах цвета, и его представления в компьютерах, статья послужит вам введением в эту тему.

Почему так много цветовых схем?

На самом деле их не так уж и много. В целом их все можно поделить на два типа: схемы представления цвета от излучаемого, и от отражённого света. Все объекты видимы для нас потому, что они сами являются источником света, либо светят отражённым светом. Чтобы более ясно понять это, взгляните на небо. Перед вами предстанут два вида объектов: те, которые светят (солнце, звезды, кометы, метеориты) и те, которые светят отражённым светом (планеты, спутники, космонавты и станция «Мир»).

В нашем случае излучающим объектом является экран монитора, а отражающим объектом является бумага, краска, пигмент, которые сами не излучают света, а светят светом, который идёт либо от солнца, либо от искусственного источника освещения.

Человеческий глаз не способен отличить цвет «определённого цвета», от цвета, полученного путём смешивания других цветов. Издавна люди подметили эту особенность, и вместо того чтобы создавать миллионы красок различных оттенков, традиционно используется лишь небольшое ограниченное их число (от сотни до трёх), а все остальные краски получаются путём смешивания исходных. Эти исходные цвета называются «первичными» — primary colors.

Человеческий глаз способен различить не более миллиона цветов. То есть фактически изображения с большим количеством цветов делать не имеет смысла, так как для человека они будут выглядеть одинаково.

В связи с этим определяются цветовые схемы (color schemes) — набор первичных цветов, используемых для получения всех остальных цветов.

В данной статье мы поведём речь о цифровом представлении цвета, с которым мы непосредственно связаны, создавая изображения с помощью компьютера и компьютерных печатных машин.

Система RGB

Экран (как и всякое другое неизлучающее свет тело) — изначально тёмный. Его исходным цветом является чёрный. Все остальные цвета на нем получаются путём использования комбинации таких трёх цветов (традиционно в цветных кинескопах используются три «пушки»), которые в своей смеси должны образовать белый цвет. Опытным путём была выведена комбинация «красный, зелёный, синий» — RGB — red/green/blue. Чёрный цвет в схеме отсутствует, так как мы его и так имеем — это цвет «чёрного» экрана. Значит отсутствие цвета в схеме RGB соответствует чёрному цвету.

Аддитивная система RGB

Эта система цветов называется аддитивной (additive), что в грубом переводе означает «складывающая/дополняющая». Иными словами, мы берём чёрный цвет (отсутствие цвета) и добавляем к нему первичные цвета, складывая их друг с другом до белого цвета.

Качество изображения на экране зависит от таких факторов, как: качество монитора (насколько хорошо он даёт «чёрный» цвет, насколько мелки точки, составляющие изображение на экране), качество видеосистемы (насколько хорошо она составляет все цвета из комбинации трёх цветов), иногда от окружающего освещения (в тёмной комнате или на ярком солнце).

Система CMYK

Бумага является изначально белой. Это означает, что она обладает способностью отражать весь спектр цветов света, который на неё попадает. Чем качественнее бумага, чем лучше она отражает все цвета, тем она нам кажется белее. Чем хуже бумага, чем больше в ней примесей и меньше белил, тем хуже она отражает цвета, и мы считаем её серой. Сравните качество бумаги журнала «Плейбой» и газеты «Конотопский вестник», и почувствуйте разницу.

Противоположный пример — асфальт. Только что положенный хороший асфальт (без примесей гальки) — идеально чёрный. То есть на самом деле цвет его нам не известен, но он таков, что поглощает все цвета света, который на него падает и потому он нам кажется чёрным. Со временем, когда по асфальту начинают ходить пешеходы или ездить машины, он становится «грязным» — то есть на его поверхность попадают вещества, которые начинают отражать видимый свет (песок, пыль, галька). Асфальт перестаёт быть чёрным и становится «серым». Если бы нам удалось «отмыть» асфальт от грязи — он снова стал бы чёрным.

Красители представляют собой вещества, которые поглощают определённый цвет. Если краситель поглощает все цвета кроме красного, то при солнечном свете, мы увидим «красный» краситель и будем считать его «красной краской». Если мы посмотрим на это краситель при свете синей лампы, он станет чёрным, и мы ошибочно примем его за «чёрную краску».

Путём нанесения на белую бумагу различных красителей, мы уменьшаем количество цветов, которые она отражает. Покрасив бумагу определённой краской мы можем сделать так, что все цвета падающего света будут поглощаться красителем, кроме одного — синего. И тогда бумага нам будет казаться выкрашенной в синий цвет. И так далее.

Соответственно, существуют комбинации цветов, смешивая которые мы можем полностью поглотить все цвета, отражаемые бумагой, и сделать её чёрной. Опытным путём была выведена комбинация «циан-маджента-жёлтый» (CMY) — cyan/magenta/yellow.

В идеале, смешивая эти цвета, мы должны были бы получить чёрный цвет. Однако на практике так не получается из-за технических качеств красителя. В лучшем случае, что мы можем получить, — это темно-бурый цвет, который лишь отдалённо напоминает чёрный. Более того весьма неразумно было бы использовать все три дорогие краски только для того, чтобы получить элементарный чёрный цвет. Поэтому в тех местах, где нужен чёрный, вместо комбинации трёх красок наносится обычный более дешёвый чёрный краситель. И потому к комбинации CMY обычно добавляется буква K (Key — «ключевой», или blacK) — обозначающая чёрный цвет.

Белый цвет в схеме отсутствует, так как его мы и так имеем — это цвет бумаги. В тех местах, где нужен белый цвет, краска просто не наносится. Значит отсутствие цвета в схеме CMYK соответствует белому цвету.

Субтрактивная система CMYK

Эта система цветов называется субтрактивной (subtractive), что в грубом переводе означает «вычитающая/исключающая». Иными словами, мы берём белый цвет (присутствие всех цветов) и, нанося и смешивая краски, удаляем из белого определённые цвета вплоть до полного удаления всех цветов — то есть получаем чёрный.

Качество изображения на бумаге зависит от многих факторов: качества бумаги (насколько она бела), качества красителей (насколько они чисты), качества полиграфической машины (насколько точно и мелко она наносит краски), качества разделения цветов (насколько точно сложное сочетание цветов разложено на три цвета), качества освещения (насколько полон спектр цветов в источнике света — если он искусственный).

Переход из одной системы в другую

Главная трудность при переходе из системы RGB в CMYK заключается в том, что на бумаге (в системе CMYK) не могут быть представлены некоторые цвета, которые с лёгкостью можно представить на экране. Если на экране запросто можно сделать оттенок цвета с точностью до бита (#CF8E12), то в смешивании красителей (при их неидеальном качестве) такой точности добиться просто невозможно. Поэтому часто то, что на экране выглядит ошеломляюще, на бумаге выглядит блекло и некрасиво.

Потому-то так много труда тратится при переводе картинки, сделанной художником на компьютере, в вид, который достойно будет выглядеть при печати. В некоторых программах можно заранее переключиться в режим CMYK и создавать изображение в этой схеме. Тогда при попытке выбрать невоспроизводимый цвет программа выдаст сообщение типа такого:

Photoshop Gamut Warning

Если вы создаёте изображение только для просмотра на экране (то, что мы имеем в случае Web-дизайна), и которое не планируется представлять в цвете на бумаге, забудьте о схеме CMYK, работайте в схеме RGB и не морочьте себе голову.

Photoshop — программа изначально предназначенная для полиграфии — обработки изображений и подготовки их для печати. Потому она укомплектована полным набором средств: от CMYK схемы до подпрограммы разделения цветов. Для Web-дизайнера эти функции Photoshop-а — мёртвый груз. Поэтому, несмотря на все достоинства и мощь Photoshop-а, стоит обратить внимание и на другие графические программы, которые специально заточены для создания «экранных» изображений или конкретно под Web. Они легче, так как не несут лишних полиграфических функций, либо вместо них укомплектованы дополнительными вкусностями, облегчающими жизнь Web-мастеру/Web-дизайнеру.

Выбор цвета

В программах работы с графикой, инструмент выбора цвета является неотъемлемым элементом. Однако, не каждый такой инструмент удобен для работы и отражает реальные свойства цвета. Здесь возникает та же проблема, что и при попытке изобразить на плоской бумаге шарообразную карту Земли.

На данных иллюстрациях представлены панели выбора цвета программ Paint, Photoshop, и Fireworks:

Настройка цветов Windows

MS Paint: стандартная панель цветов Windows.

Настройка цвета Photoshop

Adobe Photoshop CC: уже лучше, но представление цветового пространства по-прежнему плоское.

Цветовой круг Fireworks

Adobe Fireworks CS6: цветовой круг, свойства цвета, широкие возможности по подбору палитры цветовых сочетаний.

В следующих статьях, посвящённых теории цвета, представлена кубическая модель цвета. Она более удобна для работы, так как во-первых даёт чёткое понятие места (координат) каждого цифрового цвета, и во-вторых наглядно показывает взаимодействие двух систем цифрового представления цвета (RGB и CMYK).

Всё что вы хотели (и не очень хотели) знать про подсветку в PC — Железо на DTF

За 45 лет своего существования домашние компьютеры стали почти что обязательным атрибутом в каждой семье: рынок «железа» и готовых решений занимает заметную долю в мировой экономике, ежегодно выходят целые линейки продуктов. Но если раньше они оставались простым инструментом, то сейчас это, фактически, часть интерьера — и одной из ключевых особенностей стало появление RGB-подсветки.

В наши дни проще найти комплектующие с кучей светящихся элементов, нежели «классические» варианты без мигающих радугой лампочек. Конечно, здесь не обошлось без маркетинга и попыток навязать функцию, за которую приходится доплачивать свои кровные (ведь никто не думает, что диоды устанавливают бесплатно?), но потребители, в целом, сами пришли к этому.

Компьютерная мода

Исторически сложилось так, что первыми «пионерами» домашних компьютерных технологий стали энтузиасты, которые интересовались электроникой — при этом, по большей части, именно в целях работы или каких-то экспериментов: массовых игр для PC на тот момент не существовало, ровно как и интернета (в их нынешнем воплощении). Поэтому первый персональный компьютер, Altair 8800 (1975г.) продавался исключительно через «профильные» бумажные издания.

Кто сказал что прозрачные кейсы стали модны только сейчас? 

Коммерческий успех Altair побудил разработчиков задуматься о целесообразности создания домашних платформ — и мир захлестнула волна настольных компьютеров.

Мы не будем перечислять всю линейку моделей, лишь обозначим их построение и основные дизайнерские решения. Большинство PC того времени не имели отдельного «системного блока» и представляли собой полноценную конструкцию со встроенными, клавиатурой и дополнительными элементами (портами для подключения периферийных устройств и приводами для чтения накопителей на гибких магнитных дисках).

Цветовая модель RGB – HiSoUR История культуры

Цветовая модель RGB – это аддитивная цветовая модель, в которой красный, зеленый и синий свет объединяются различными способами для воспроизведения широкого спектра цветов. Название модели происходит от инициалов трех основных основных цветов: красного, зеленого и синего.

Основная цель цветовой модели RGB – распознавание, представление и отображение изображений в электронных системах, таких как телевизоры и компьютеры, хотя оно также используется в обычной фотографии. Перед электронным возрастом цветовая модель RGB уже имела за ней прочную теорию, основанную на человеческом восприятии цветов.

RGB – зависимая от устройства цветовая модель: разные устройства обнаруживают или воспроизводят данное значение RGB по-разному, поскольку цветовые элементы (такие как люминофоры или красители) и их реакция на отдельные уровни R, G и B варьируются от производителя к производителю, или даже в одном и том же устройстве с течением времени. Таким образом, значение RGB не определяет один и тот же цвет на всех устройствах без какого-либо управления цветом.

Типичными устройствами ввода RGB являются цветные телевизоры и видеокамеры, сканеры изображений и цифровые камеры. Типичными выходными устройствами RGB являются телевизоры различных технологий (CRT, LCD, плазма, OLED, квантовые точки и т. Д.), Дисплеи для компьютеров и мобильных телефонов, видеопроекторы, многоцветные светодиодные дисплеи и большие экраны, такие как JumboTron. Цветные принтеры, с другой стороны, не являются устройствами RGB, а субтрактивными цветными устройствами (как правило, цветной модель CMYK).

В этой статье обсуждаются концепции, общие для всех цветовых пространств, которые используют цветовую модель RGB, которые используются в одной реализации или другой в технологии создания цветных изображений.

Аддитивные цвета
Чтобы сформировать цвет с RGB, необходимо наложить три световых пучка (один красный, один зеленый и один синий) (например, из-за излучения с черного экрана или отражения от белого экрана). Каждый из трех лучей называется компонентом этого цвета, и каждый из них может иметь произвольную интенсивность, полностью от полной до полной, в смеси.

Цветовая модель RGB является аддитивной в том смысле, что три световых пучка добавляются вместе, а их спектры света добавляют длину волны для длины волны, чтобы сделать спектр конечного цвета. Это по существу противоположно модели субтрактивного цвета, которая применяется к краскам, краскам, красителям и другим веществам, цвет которых зависит от отражения света, под которым мы их видим. Из-за свойств эти три цвета создают белый цвет, это резко контрастирует с физическими цветами, такими как красители, которые создают черный цвет при смешивании.

Интенсивность нуля для каждого компонента дает самый темный цвет (без света, считается черным), а полная интенсивность каждого дает белый цвет; качество этого белого зависит от природы первичных источников света, но если они правильно сбалансированы, результатом является нейтральная белая, соответствующая белой точке системы. Когда интенсивности для всех компонентов одинаковы, результатом является оттенок серого, более темного или светлого в зависимости от интенсивности. Когда интенсивности различны, результатом является окрашенный оттенок, более или менее насыщенный в зависимости от разности самых сильных и слабых из интенсивности используемых основных цветов.

Когда один из компонентов имеет самую сильную интенсивность, цвет представляет собой оттенок вблизи этого основного цвета (красноватый, зеленоватый или голубоватый), а когда два компонента имеют ту же самую сильную интенсивность, тогда цвет представляет собой оттенок вторичного цвета (оттенок голубого, пурпурного или желтого). Вторичный цвет образован суммой двух основных цветов одинаковой интенсивности: голубой – зеленый + синий, пурпурный – красный + синий, а желтый – красный + зеленый. Каждый вторичный цвет является дополнением к одному основному цвету; когда первичный и дополнительный вторичный цвет добавляются вместе, результат белый: голубой дополняет красный, пурпурный дополняет зеленый, а желтый – синим.

Цветовая модель RGB сама по себе не определяет, что понимается под красным, зеленым и синим колориметрически, поэтому результаты их смешивания не указаны как абсолютные, а относительно основных цветов. Когда определяются четкие цветности красных, зеленых и синих праймериз, цветовая модель становится абсолютным цветовым пространством, таким как sRGB или Adobe RGB; см. цветовые пространства RGB для более подробной информации.

Физические принципы выбора красного, зеленого и синего

Выбор первичных цветов связан с физиологией человеческого глаза; хорошие праймериз – это стимулы, которые максимизируют разницу между ответами конусных клеток сетчатки человека на свет разных длин волн и тем самым создают большой цветовой треугольник.

Нормальные три вида светочувствительных фоторецепторных клеток в человеческом глазу (клетки конуса) наиболее часто реагируют на желтый (длинная длина волны или L), зеленый (средний или M) и фиолетовый (короткий или S) свет (пиковые длины волн около 570 нм , 540 нм и 440 нм соответственно). Разница в сигналах, полученных от трех видов, позволяет мозгу различать широкую гамму разных цветов, будучи наиболее чувствительной (в целом) до желтовато-зеленого света и различий между оттенками в области зеленого и оранжевого.

В качестве примера предположим, что свет в оранжевом диапазоне длин волн (приблизительно от 577 до 597 нм) попадает в глаз и ударяет сетчатку. Свет этих длин волн активирует как средние, так и длинноволновые конусы сетчатки, но неравномерно – длинноволновые клетки будут реагировать больше. Разница в ответе может быть обнаружена мозгом, и это различие лежит в основе нашего восприятия апельсина. Таким образом, оранжевый вид объекта возникает из-за света от объекта, входящего в наш глаз, и одновременно стимулирует разные конусы, но в разной степени.

Использование трех основных цветов недостаточно для воспроизведения всех цветов; только цвета в цветовом треугольнике, определяемые хроматичностью праймериз, могут быть воспроизведены путем аддитивного смешивания неотрицательных количеств этих цветов света.

История теории и использования цветовой модели RGB
Цветовая модель RGB основана на теории трихроматического цветного зрения Юнга-Гельмгольца, разработанной Томасом Яном и Германом Гельмгольцем в начале и середине девятнадцатого века, а также в цветовом треугольнике Джеймса Клерка Максвелла, который разработал эту теорию (около 1860 г.).

фотография
Первые эксперименты с RGB в ранней цветной фотографии были сделаны в 1861 году самим Максвелом и связаны с процессом объединения трех цветовых фильтров. Чтобы воспроизвести цветную фотографию, необходимы три подходящих проецирования над экраном в темной комнате.

Присадочная модель RGB и варианты, такие как оранжево-зеленый фиолетовый, также использовались в цветных пластинах Autochrome Lumière и других технологиях экранных табличек, таких как цветной экран Joly и процесс Paget в начале двадцатого века. Цветная съемка с использованием трех отдельных пластин использовалась другими пионерами, такими как русский Сергей Прокудин-Горский в период с 1909 по 1915 год. Такие методы продолжались до 1960 года, используя дорогостоящий и чрезвычайно сложный трехцветный карстовый автотип.
При использовании воспроизведение отпечатков с трехслойных фотографий производилось красителями или пигментами с использованием дополнительной модели CMY, просто используя отрицательные пластины фильтрованных заготовок: обратный красный цвет дает голубую пластину и т. Д.

телевидение
До создания практического электронного телевидения в России уже в 1889 году были патенты на механически отсканированные цветовые системы. Пионер цветного телевидения John Logie Baird продемонстрировал первую в мире передачу цвета RGB в 1928 году, а также первую в мире цветную трансляцию в 1938 году в Лондоне. В своих экспериментах сканирование и отображение выполнялись механически путем вращения цветных колес.

В 1940 году система вещания Columbia Broadcasting System (CBS) начала экспериментальную последовательную систему цветов RGB. Изображения были сканированы электрически, но система все еще использовала движущуюся часть: прозрачное колесо RGB, вращающееся со скоростью выше 1200 об / мин синхронно с вертикальной разверткой. Камера и электронно-лучевая трубка (ЭЛТ) были монохроматическими. Цвет был обеспечен цветными колесами в камере и приемнике. Совсем недавно цветные колеса использовались в последовательных проекционных телевизионных приемниках на основе монохромного DLP-изображения Texas Instruments.

Современная технология теневой маски RGB для цветных дисплеев CRT была запатентована Вернером Флексигом в Германии в 1938 году.

Персональные компьютеры
Ранние персональные компьютеры конца 1970-х – начала 1980-х годов, такие как Apple, Atari и Commodore, не использовали RGB в качестве основного метода управления цветами, а скорее композитного видео. IBM представила 16-цветную схему (четыре бита по одному бит для красного, зеленого, синего и интенсивного) с адаптером цветной графики (CGA) для своего первого IBM PC (1981), позже усовершенствованного с помощью Enhanced Graphics Adapter (EGA ) в 1984 году. Первым производителем графической карты TrueColor для ПК (TARGA) был Truevision в 1987 году, но только в 1987 году, когда появился видеокарты (VGA), RGB стал популярным, в основном из-за аналогового сигналы в соединении между адаптером и монитором, что позволило использовать очень широкий диапазон цветов RGB. Фактически, пришлось ждать еще несколько лет, потому что оригинальные карты VGA были управляемы палитрой, как EGA, но с большей свободой, чем VGA, но поскольку разъемы VGA были аналоговыми, более поздние варианты VGA (изготовленные разными производителями в рамках неофициального имя Super VGA), в конце концов добавил truecolor. В 1992 году журналы сильно рекламировали аппараты Super VGA Truecolor.

RGB-устройства

RGB и дисплеи
Отрезка рендеринга цветного ЭЛТ: 1. Электронные пушки 2. Электронные балки 3. Фокусирующие катушки 4. Откручивающие катушки 5. Анодное соединение 6. Маска для разделения лучей на красную, зеленую и синюю часть отображаемого изображения 7. Фосфорный слой с красным , зеленые и синие зоны 8. Крупный план внутренней стороны экрана, покрытого люминофором экрана

Одним из распространенных применений цветовой модели RGB является отображение цветов на электронно-лучевой трубке (CRT), жидкокристаллическом дисплее (LCD), плазменном дисплее или органическом светодиодном (OLED) дисплее, таком как телевизор, монитор компьютера, или крупномасштабный экран. Каждый пиксель на экране создается путем запуска трех небольших и очень близких, но все еще разделенных источников света RGB. При обычном расстоянии просмотра отдельные источники неразличимы, что заставляет глаз видеть определенный сплошной цвет. Все пиксели, расположенные на прямоугольной поверхности экрана, соответствуют цветному изображению.

Во время обработки цифрового изображения каждый пиксель может быть представлен в памяти компьютера или аппаратных средствах интерфейса (например, видеокарте) в виде двоичных значений для компонентов красного, зеленого и синего цветов. При правильном управлении эти значения преобразуются в интенсивности или напряжения посредством гамма-коррекции для коррекции присущей нелинейности некоторых устройств, так что предполагаемые интенсивности воспроизводятся на дисплее.

Quattron, выпущенный Sharp, использует цвет RGB и добавляет желтый цвет в качестве субпикселя, предположительно позволяя увеличить количество доступных цветов.

Видеоэлектроника
RGB также является термином, относящимся к типу компонентного видеосигнала, используемого в индустрии видеоэлектроники. Он состоит из трех сигналов – красного, зеленого и синего – на трех отдельных кабелях / контактах. Форматы сигналов RGB часто основаны на модифицированных версиях стандартов RS-170 и RS-343 для монохромного видео. Этот тип видеосигнала широко используется в Европе, поскольку он является лучшим качеством сигнала, который может быть нанесен на стандартный разъем SCART. Этот сигнал известен как RGBS (4 BNC / RCA), но он напрямую совместим с RGBHV, используемым для компьютерных мониторов (обычно на 15-контактных кабелях, заканчивающихся 15-контактными разъемами D-sub или 5 BNC) , который имеет отдельные горизонтальные и вертикальные сигналы синхронизации.

Вне Европы RGB не очень популярен как формат видеосигнала; S-Video занимает это место в большинстве неевропейских регионов. Однако почти все компьютерные мониторы по всему миру используют RGB.

Видеокамера
Фреймбуфер представляет собой цифровое устройство для компьютеров, которые хранят данные в так называемой видеопамяти (содержащей массив видеопамяти или аналогичных микросхем). Эти данные поступают либо на три цифроаналоговых преобразователя (ЦАП) (для аналоговых мониторов), по одному на основной цвет или непосредственно на цифровые мониторы. Управляемые программным обеспечением CPU (или другие специализированные чипы) записывают соответствующие байты в видеопамять для определения изображения. Современные системы кодируют значения цветов пикселей, выделяя восемь бит каждому из компонентов R, G и B. Информация RGB может переноситься непосредственно самими пиксельными битами или предоставляться отдельной таблицей цветового поиска (CLUT), если используются индексированные цветовые графические режимы.

CLUT – специализированная оперативная память, в которой хранятся значения R, G и B, которые определяют конкретные цвета. Каждый цвет имеет свой собственный адрес (индекс) – рассматривайте его как описательный ссылочный номер, который обеспечивает определенный цвет, когда изображение нуждается в нем. Содержимое CLUT очень похоже на палитру цветов. Данные изображения, которые используют индексированный цвет, определяют адреса в CLUT для предоставления требуемых значений R, G и B для каждого конкретного пикселя за один пиксель за раз. Конечно, перед отображением CLUT должен быть загружен значениями R, G и B, которые определяют палитру цветов, необходимых для каждого изображения. Некоторые видеоприложения хранят такие палитры в файлах PAL (игра Microsoft AOE, например, использует более полудюжины) и может комбинировать CLUT на экране.

RGB24 и RGB32
Эта косвенная схема ограничивает количество доступных цветов в изображении CLUT – типично 256-кубированный (8 бит в трех цветовых каналах со значениями 0-255) – хотя каждый цвет в таблице RGB24 CLUT имеет только 8 бит, представляющих 256 кодов для каждого комбинаторной математической теории праймеров R, G и B говорит, что это означает, что любой заданный цвет может быть одним из 16 777 216 возможных цветов. Однако преимущество заключается в том, что файл изображения с индексированным цветом может быть значительно меньше, чем при использовании только 8 бит на пиксель для каждого основного.

Однако современное хранилище гораздо дешевле, что значительно снижает необходимость минимизировать размер файла изображения. Используя соответствующую комбинацию красных, зеленых и синих интенсивностей, можно отобразить многие цвета. В настоящее время типичные адаптеры дисплея используют до 24 бит информации для каждого пикселя: 8 бит на компонент, умноженный на три компонента (см. Раздел «Цифровые представления» ниже (24 бит = 2563, каждое первичное значение 8 бит со значениями 0-255) С этой системой допускаются дискретные комбинации значений R, G и B 16,777,216 (2563 или 224), предоставляя миллионы различных (хотя и не обязательно различимых) оттенков, насыщенности и яркости. Расширенное затенение реализовано различными способами, некоторые форматы, такие как .png и .tga, среди других, используя четвертый цветной канал оттенков серого в качестве слоя маскирования, который часто называют RGB32.

Для изображений со скромным диапазоном яркостей от самых темных до самых легких восемь бит на основной цвет обеспечивают изображения хорошего качества, но для экстремальных изображений требуется больше бит на основной цвет, а также расширенная технология отображения. Для получения дополнительной информации см. Изображение с высоким динамическим диапазоном (HDR).

нелинейность
В устройствах классической электронно-лучевой трубки (ЭЛТ) яркость данной точки над флуоресцентным экраном из-за удара ускоренных электронов не пропорциональна напряжениям, применяемым к сетям управления электронной пушкой, а к расширительной функции этого напряжения. Величина этого отклонения известна как его гамма-значение ({\ displaystyle \ gamma} \ gamma), аргумент для функции степенного закона, который тесно описывает это поведение. Линейный отклик задается гамма-значением 1,0, но фактические нелинейности ЭЛТ имеют гамма-значение около 2,0-2,5.

Точно так же интенсивность выхода на телевизорах и устройствах отображения на экране не прямо пропорциональна R (G) и В (B), которые подают электрические сигналы (или значения данных файла, которые приводят их через преобразователи с цифровым аналоговым преобразователем). На типичном стандартном 2,2-гамма-дисплее CRT значение RGB входной интенсивности (0,5, 0,5, 0,5) выводит только около 22% полной яркости (1,0, 1,0, 1,0) вместо 50%. Для получения правильного ответа гамма-коррекция используется для кодирования данных изображения и, возможно, для дальнейших корректировок как часть процесса калибровки цвета устройства. Гамма влияет на черно-белый телевизор, а также цвет. В стандартном цветном телевизоре сигналы широковещательной передачи гамма-коррекции.

RGB и камеры

В цветном телевизоре и видеокамерах, выпущенных до 1990-х годов, входящий свет был отделен призмами и фильтрами в трех основных цветах RGB, каждый из которых подавал в отдельную трубку видеокамеры (или пикапную трубку). Эти трубки представляют собой тип электронно-лучевой трубки, которые не следует путать с дисплеями ЭЛТ.

С появлением в 1980-х годах коммерчески жизнеспособного устройства с зарядовой связью (CCD), сначала были заменены датчики-датчики такого типа. Позже была применена электроника с более высокой шкалой (в основном, Sony), упрощающая и даже удаляющая промежуточную оптику, тем самым уменьшая размеры домашних видеокамер и в конечном итоге приводя к созданию полноценных видеокамер. Текущие веб-камеры и мобильные телефоны с камерами – это самые миниатюрные коммерческие формы такой технологии.

Фотографические цифровые камеры, которые используют датчик изображения CMOS или CCD, часто работают с некоторыми вариантами модели RGB. В блоке фильтра Bayer зеленый получает в два раза больше детекторов, чем красный и синий (соотношение 1: 2: 1), чтобы достичь более высокого разрешения яркости, чем разрешение цветности. Датчик имеет сетку из красных, зеленых и синих детекторов, расположенных так, что первый ряд – RGRGRGRG, следующий – GBGBGBGB, и эта последовательность повторяется в последующих строках. Для каждого канала отсутствующие пиксели получают путем интерполяции в процессе демозаизации для создания полного изображения. Кроме того, применялись другие процессы, чтобы отображать измерения RGB камеры в стандартное цветовое пространство RGB как sRGB.

RGB и сканеры
При вычислении сканер изображений – это устройство, которое оптически сканирует изображения (печатный текст, почерк или объект) и преобразует его в цифровое изображение, которое передается на компьютер. Среди других форматов существуют плоские, барабанные и пленочные сканеры, и большинство из них поддерживают цвет RGB. Их можно считать преемниками ранних устройств ввода телефотографии, которые могли отправлять последовательные линии сканирования в виде сигналов аналоговой амплитудной модуляции по стандартным телефонным линиям соответствующим приемникам; такие системы использовались в печати с 1920-х до середины 1990-х годов. Цветные телефотографии были отправлены в виде трех разделенных RGB-фильтров изображений последовательно.

В настоящее время в качестве датчиков изображения обычно используются устройства с зарядовой связью (CCD) или датчик контактного изображения (CIS), тогда как старые сканеры барабанов используют фотоумножитель в качестве датчика изображения. Ранние сканеры цветной пленки использовали галогенную лампу и трехцветное колесо фильтра, поэтому для сканирования одного цветного изображения потребовалось три экспозиции. Из-за проблем с нагревом, наихудшим из которых является потенциальное разрушение отсканированной пленки, эта технология позднее была заменена неигревающими источниками света, такими как цветные светодиоды.

Глубина цвета
Цветовая модель RGB является одним из наиболее распространенных способов кодирования цвета при вычислении, и используются несколько различных двоичных цифровых представлений. Основной характеристикой всех из них является квантование возможных значений для каждого компонента (технически образец (сигнал)), используя только целые числа в пределах некоторого диапазона, обычно от 0 до некоторой мощности двух минус один (2n-1) для соответствия их в несколько бит группировок. Обычно обнаруживаются кодировки 1, 2, 4, 5, 8 и 16 бит на цвет; общее количество бит, используемых для цвета RGB, обычно называют глубиной цвета.

Геометрическое представление
Поскольку цвета обычно определяются тремя компонентами не только в модели RGB, но и в других цветовых моделях, таких как CIELAB и Y’UV, и т. Д., То трехмерный объем описывается обработкой значений компонентов в виде обычных декартовых координат в евклидовом пространстве. Для модели RGB это представляет собой куб с использованием неотрицательных значений в диапазоне 0-1, назначение черного в начало координат в вершине (0, 0, 0) и увеличение значений интенсивности, проходящих вдоль трех осей вверх до белого в вершине (1, 1, 1), диагонально противоположной черной.

Триплет RGB (r, g, b) представляет трехмерную координату точки данного цвета внутри куба или его граней или вдоль его краев. Этот подход позволяет вычислять цветовое сходство двух заданных цветов RGB, просто вычисляя расстояние между ними: чем короче расстояние, тем выше сходство. Вычисления вне диапазона также могут быть выполнены таким образом.

Цвета в дизайне веб-страниц
Цветовая модель RGB для HTML была официально принята в качестве стандарта Интернета в HTML 3.2, хотя она использовалась в течение некоторого времени до этого. Первоначально ограниченная глубина цвета большинства видеооборудований приводила к ограниченной цветовой палитре 216 цветов RGB, определяемой цветовым кубом Netscape. При преобладании 24-битных дисплеев использование всех 16,7 миллионов цветов цветового кода HTML RGB больше не создает проблем для большинства зрителей.

Веб-безопасная цветовая палитра состоит из 216 (63) комбинаций красного, зеленого и синего цветов, где каждый цвет может принимать одно из шести значений (в шестнадцатеричном порядке): # 00, # 33, # 66, # 99, #CC или #FF (в зависимости от диапазона от 0 до 255 для каждого значения, описанного выше). Эти шестнадцатеричные значения = 0, 51, 102, 153, 204, 255 в десятичной форме, что = 0%, 20%, 40%, 60%, 80%, 100% с точки зрения интенсивности. Это кажется прекрасным для разделения 216 цветов на кубик размерности 6. Однако, не имея гамма-коррекции, воспринимаемая интенсивность на стандартном 2,5-гамма-ЭЛТ-дисплее есть только: 0%, 2%, 10%, 28%, 57%, 100%. См. Фактическую веб-безопасную цветовую палитру для визуального подтверждения того, что большинство выпущенных цветов очень темные или см. Цветовой список Xona.com для параллельного сравнения правильных цветов рядом с их эквивалентом, не имеющих правильной гамма-коррекции.

Управление цветом
Основная статья: Управление цветом
Правильное воспроизведение цветов, особенно в профессиональной среде, требует управления цветом всех устройств, участвующих в производственном процессе, многие из которых используют RGB. Управление цветом приводит к нескольким прозрачным преобразованиям между независимыми от устройства и зависящими от устройства цветовыми пространствами (RGB и другими, как CMYK для цветной печати) в течение типичного производственного цикла, чтобы обеспечить согласованность цвета в течение всего процесса. Наряду с творческой обработкой, такие вмешательства на цифровых изображениях могут повредить точность цвета и детали изображения, особенно там, где гамма уменьшена. Профессиональные цифровые устройства и программные средства позволяют обрабатывать изображения 48 бит / с (бит на пиксель) (16 бит на канал), чтобы минимизировать такой ущерб.

Приложения, совместимые с ICC, такие как Adobe Photoshop, используют либо цветовое пространство Lab, либо цветовое пространство CIE 1931, как пространство для соединения профиля, при переходе между цветовыми пространствами.

Синтаксис в CSS:
RGB (#, #, #)
где # равно пропорции красного, зеленого и синего соответственно. Этот синтаксис можно использовать после таких селекторов, как «background-color:» или (для текста) «color:».

Отношение форматов RGB и яркости-цветности
Все форматы яркости и цветности, используемые в различных телевизионных и видеостандартах, таких как YIQ для NTSC, YUV для PAL, YDBDR для SECAM и YPBPR для компонентного видео, используют цветовые разностные сигналы, благодаря которым цветные изображения RGB могут кодироваться для трансляции / записи и затем снова декодируется в RGB, чтобы отобразить их. Эти промежуточные форматы были необходимы для совместимости с существующими черно-белыми форматами ТВ. Кроме того, эти сигналы разности цветов требуют более низкой полосы пропускания данных по сравнению с полными RGB-сигналами.

Аналогично, современные высокопроизводительные схемы сжатия данных цифрового цвет

Различия цветовых моделей RGB, CMYK, HSB

Системы цветопередачи RGB, CMYK и HSB

Загадочные RGB и CMYK относятся к базовым знаниям графического дизайна. Мы поговорим о различиях цветопередачи для того, чтобы стало понятно, почему один и тот же цвет в макете на экране компьютера и на бумаге будет выглядеть по-разному. Возможно, вы уже сталкивались с чем-то подобным при заказе полиграфии.

Цветовая модель — это способ описания цвета с помощью количественных характеристик. Под цветовой моделью обычно подразумевают термин, который обозначает абстрактную модель описания представления цветов в виде трех- или четырехзначных чисел, называемых цветовыми компонентами (иногда — цветовыми координатами). Цветовая модель используется для описания излучаемого и отраженного цветов. Вместе с методом интерпретации этих данных множество цветов цветовой модели и определяет цветовое пространство.

Что такое RGB

Начнём с цифр. 16,7 миллионов оттенков отображает современный монитор компьютера или хорошее печатающее устройство. Такая большая палитра получается смешением всего трёх цветов в разных пропорциях — красного, синего и зелёного. В графических редакторах каждый из них представлен 256 оттенками (256х256х256=16,7 миллионов).

RGB — цветовая модель, названная так по трём заглавным буквам названий цветов, лежащих в ее основе: Red, Green, Blue, или красный, зелёный, синий. Эти же цвета образуют и все промежуточные. Научное название — аддитивная модель (от англ.слова add — «добавлять»). Служит для вывода изображения на экраны мониторов и другие электронные устройства. Обладает большим цветовым охватом.

Цветовая модель RGB предполагает, что вся палитра складывается из светящихся точек. Это значит, что на бумаге невозможно изобразить цвет в цветовой модели RGB, так как бумага поглощает цвет, а не светится. Исходный цвет можно получить, если прибавить к несветящейся — или изначально чёрной —поверхности проценты от каждого из ключевых цветов.

RGB-цвет получается в результате смешения красного, синего и зелёного в разных пропорциях: каждый оттенок можно описать тремя числами, обозначающими яркость трёх основных цветов.

a1447d48b298a597c442ff6f8250363d.png

Как выглядит цветовая модель RGB?

Представьте, что мы направили лучи красного, зелёного и синего цветов в одну точку на белой стене. В центре получится белое пятно, интенсивность цветов в этой точке достигает 100 %. В местах, где лучи соприкасаются, вы увидите новые оттенки:

  • зелёный+синий — голубой (Cian)
  • синий+ красный — пурпурный (Magenta)
  • красный+зелёный — жёлтый (Yellow)

Что такое CMY(K)

Эти три цвета лежат в основе цветовой модели CMYK — субстрактивная модель (от англ. слова subtraсt — «вычитать»), которая основана на вычитании из белого первичных цветов: голубой цвет вычитает из белого цвета красный, желтый — синий, а пурпурный — зелёный. Модель CMY(K) используется в полиграфии для стандартной триадной печати и в сравнении с RGB-моделью обладает меньшим цветовым охватом. Бумага и другие печатные материалы — это поверхности, которые отражают свет. Согласитесь, гораздо удобнее считать, какое количество света отразилось от той или иной поверхности, чем считать, сколько поглотилось.

Если вычесть из белого три первичных цвета — RGB, получаются три дополнительных цвета CMY.

200c66c0b917572e48aff17701e144d0.png

В модель CMYK добавлен дополнительный черный цвет, и на это есть веские причины. В теории при смешении трёх основных цветов должен получиться чёрный цвет. В реальности же в красках есть примеси, и вместо чистого черного получается неопределенный грязно-коричневый. Тем более при печати смешение сразу трёх цветов ради получения черного очень сильно увлажняет бумагу, возрастает риск ее переувлажнения при не всегда идеальных внешних условиях и в силу особенностей самих красителей. Именно поэтому в модель введён чёрный цвет для получения тёмных оттенков и непосредственно самого чёрного. Буква К в названии модели CMYK взята у слова Black, и она обозначает ключевой цвет — Key Color.

Что такое HSB?

Перед тем, как подвести итог, подчеркнём: модели RGB и CMYK не так хорошо соответствуют понятию собственно цвета, как цветовая модель HSB. Это аббревиатура с английских слов: Hue, Saturation, Brightness — тон, насыщенность, яркость. HSB основана на модели RGB, но у неё другая система координат: каждый цвет в этой модели получается путем добавления к основному спектру черной или белой краски. При этом тон — это собственно цвет и есть, насыщенность — процент добавленной к цвету белой краски, а яркость — процент добавленной чёрной краски.

Описание цветов в этой модели не соответствует цветам, воспринимаемых человеческим глазом. Эта модель используется в графических редакторах при настройке палитры цвета. Художники используют её для тщательного подбора оттенков.

c01f726b61f249d03f765e3dcbc362ec.jpg

В чем отличие RGB от CMYK?

Итак, подведем краткий итог:

  • RGB — цветовая модель, по которой строятся цвета на экране. Основана на сложении цветов.
  • CMYK — цветовая модель, по которой формируется изображение для печати. Основана на вычитании цветов.

Разница между CMYK и RGB заключается в том, что RGB-цвет по сути лишь излучаемый цвет (или свет), а CMYK-цвет — цвет отражаемый (краска). Первый образуется за счёт интенсивности свечения, а второй получается как результат наложения красок в полиграфии. Соответственно, любые изображения в электронном виде — рисунки на мониторе компьютера, фотографии на экране телефона — основываются на RGB-модели. Модель CMYK применяется для полноцветной печати. А чтобы цвета не потерялись, изображение перед печатью выводят из аддитивной модели в субстрактивную. Говоря на языке дизайнеров и специалистов подготовки макетов, модель CMYK — рабочий инструмент офсетной типографии, который выводит цвета на бумагу.

1b38ca8ddda135db37c47a26434342d0.jpg

CMYK и RGB: применение на практике

Обычно при печати используют четыре краски: голубую, пурпурную, желтую и черную, что и составляет палитру CMYK. Макеты для печати обязательно должны быть подготовлены в цветовой модели CMYK, так как в процессе вывода форм растровый процессор однозначно трактует любой цвет как составляющую CMYK. Важно помнить, что цветовой охват CMYK меньше, чем RGB, поэтому все изображения, при подготовке макета на печать, требуют цветокоррекции и правильной конвертации в цветовой пространство CMYK.

Прежде, чем сделать заказ полиграфии, важно помнить, что на цвет при печати влияет ещё много факторов — качество и поверхность бумаги, возможности печатанной машины, внешние условия. В идеале лучше сделать цветопробу и увидеть на бумаге цвет будущего тиража. Цветопроба не отнимет много времени, но поможет избежать возможных ошибок при печати. Это просто: набор нужных сочетаний триадных красок печатают на цветопробной бумаге на полностью откалиброванном под печатные машины принтере, а затем данные сравниваются с эталонными значениями. Подробнее о цветопробе можно прочитать в другой статье нашего блога: Цветопроба — инструмент предсказуемой печати.

Какая система RGB-освещения лучше всего подходит для игр

Кредит: Logitech

Раньше RGB-освещение для вашего ПК было делом DIY. В наши дни практически для каждого бренда, играющего в периферийном игровом пространстве, есть простой в настройке и легкий в использовании комплект программного обеспечения для RGB-освещения.

Идея состоит в том, чтобы у вас было больше возможностей для настройки и контроля над тем, как выглядит ваш игровой процесс на ПК.Однако насколько это важно для вас, в конечном итоге будет зависеть от личных предпочтений, а не всего остального. Некоторым игрокам на ПК требуются предлагаемые здесь обширные и расширенные возможности настройки. Других вообще не волнует RGB-освещение.

Для новичков количество конкурирующих экосистем освещения может сделать вещи немного пугающими и подавляющими. Чтобы прояснить ситуацию, мы подумали, что составим обзор того, что предлагает каждая экосистема RGB.

Razer

Кредит: Razer

Как называется программное обеспечение Razer RGB?

Razer Chroma.

Какие продукты он поддерживает?

Razer Chroma доступна для мышей, клавиатур, наушников, ноутбуков, ковриков для мыши, микрофонов, динамиков и внешних корпусов графического процессора Razer.

Начиная с четвертого квартала 2018 года, в нем также появятся периферийные устройства сторонних производителей.

Кредит: Razer

Сколько цветов предлагает Razer Chroma?

Razer Chroma поддерживает спектр до 16,8 миллионов цветов.

Поддерживает ли Razer Chroma игровые профили?

Экосистема Razer Chroma поддерживает возможность настраивать и публиковать собственные пользовательские профили освещения RGB для каждой игры.Он также поддерживает интеграцию подсветки Chroma под руководством разработчиков через программу «Работает с Razer Chroma».

Поддерживает ли Razer Chroma макросы?

Razer Chroma поддерживает макросы через Razer Synapse.

Кредит: Razer

Поддерживает ли Razer Chroma индивидуальную настройку клавиш?

Да. Razer Chroma поддерживает индивидуальную настройку ключа с помощью Razer Synapse.

Поддерживает ли Razer Chroma сохранение и отправку ваших собственных пресетов?

Да.Razer Chroma поддерживает сохранение и обмен пользовательскими пресетами через Razer Synapse.

HyperX

Кредит: HyperX

Как называется программное обеспечение HyperX RGB?

Система RGB-освещения HyperX называется NGeunity.

Какие продукты поддерживает система освещения HyperX NGenuity?

Подсветка HyperX NGenuity RGB доступна на мышах, клавиатурах, наушниках и модулях памяти HyperX.

Сколько цветов предлагает система освещения HyperX NGenuity?

Система освещения HyperX NGenuity поддерживает диапазон до 16.8 миллионов цветов.

Поддерживает ли система освещения HyperX NGenuity игровые профили?

Да. Экосистема системы освещения HyperX NGenuity поддерживает возможность настраивать и совместно использовать собственные пользовательские профили освещения RGB для каждой игры.

Кредит: HyperX

Поддерживает ли система освещения HyperX NGenuity макросы?

Да. Система освещения HyperX поддерживает макросы через программное обеспечение Ngenuity.

Поддерживает ли система освещения HyperX NGenuity индивидуальную настройку клавиш?

Да.Система освещения HyperX поддерживает индивидуальную индивидуальную настройку с помощью Ngenuity.

Поддерживает ли система освещения HyperX NGenuity совместное использование ваших предварительных настроек освещения?

Да. Система освещения HyperX поддерживает сохранение и обмен пользовательскими предустановками через Ngenuity.

Logitech

Кредит: Logitech

Как называется программное обеспечение Logitech G RGB?

Система освещения RGB Logitech G называется Lightsync.

Какие продукты поддерживает система освещения Logitech G Lightsync?

Logitech G Lightsync доступен для мышей, клавиатур, наушников и динамиков Logitech G.

Сколько цветов предлагает система освещения Logitech G Lightsync?

Logitech G Lightsync поддерживает спектр до 16,8 миллионов цветов.

Поддерживает ли система освещения Logitech G Lightsync игровые профили?

Да. Logitech G Lightsync поддерживает возможность настраивать и публиковать собственные профили освещения RGB для каждой игры. Logitech заявляет, что поддерживает более 300 наименований.

Кредит: Logitech

Поддерживает ли система освещения Logitech G Lightsync макросы?

Да.Logitech G Lightsync поддерживает макросы через программное обеспечение Lightsync.

[Связанное содержимое: четыре альтернативы переключателям Cherry MX]

Поддерживает ли система освещения Logitech G Lightsync индивидуальную настройку клавиш?

Да. Система освещения Logitech G Lightsync поддерживает индивидуальную настройку каждой клавиши с помощью приложения Lightsync.

Поддерживает ли система освещения Logitech Lightsync совместное использование ваших собственных предустановок?

Да.Система освещения Logitech G Lightsync поддерживает совместное использование пользовательских предустановок, сохраненных в приложении Lightsync.

Republic of Gamers

Предоставлено: ASUS

Как называется программное обеспечение Republic of Gamers ’RGB?

Система освещения RGB Republic of Gamers называется Aurasync.

Какие продукты поддерживает система освещения Aurasync?

ROG Aurasync доступен для мышей, клавиатур, наушников и динамиков ROG.

Сколько цветов предлагает система освещения ROG Aurasync?

ROG Aurasync поддерживает спектр до 16.8 миллионов цветов.

Поддерживает ли система подсветки ROG Aurasync игровые профили?

Нет. ROG Aurasync не поддерживает возможность настройки и совместного использования собственных профилей освещения RGB для каждой игры.

Предоставлено: ASUS.

Поддерживает ли система освещения ROG Aurasync макросы?

Да. ROG Aurasync поддерживает макросы через программное обеспечение Lightsync.

Поддерживает ли система подсветки ROG Aurasync индивидуальную настройку клавиш?

Да.Система освещения ROG Aurasync поддерживает индивидуальную настройку каждой клавиши с помощью настольного приложения Aurasync.

Поддерживает ли система освещения ROG Aurasync совместное использование ваших собственных предустановок?

Нет. Система освещения Aurasync не поддерживает сохранение и совместное использование пользовательских предустановок.

Steelseries

Кредит: Steelseries

Как называется программное обеспечение SteelSeries RGB?

Система освещения Steelseries RGB называется Prism Sync.

Какие продукты поддерживает система освещения Prism Sync?

Prism Sync доступен для мышей, клавиатур, наушников и динамиков Steelseries.Он также доступен на некоторых мониторах MSI.

Сколько цветов предлагает система освещения Prism Sync?

Prism Sync поддерживает спектр до 16,8 миллионов цветов.

Поддерживает ли система освещения Prism Sync игровые профили?

Нет. Prism Sync не поддерживает возможность настройки и совместного использования ваших собственных профилей освещения RGB для каждой игры. Тем не менее, он поддерживает некоторые профили RGB для каждой игры через набор специализированных приложений, называемых Engine Apps.

Кредит: Steelseries

Поддерживает ли система освещения Prism Sync макросы?

Да. Prism Sync поддерживает макросы.

Поддерживает ли система освещения Prism Sync индивидуальную настройку клавиш?

Да. Система освещения Prism Sync поддерживает индивидуальную настройку каждой клавиши.

Поддерживает ли система освещения Prism Sync совместное использование ваших собственных предустановок?

Нет. Система освещения Prism Sync не поддерживает совместное использование пользовательских предустановок в традиционном смысле.Однако пользователи могут создать резервную копию своих настроек освещения RGB с помощью SteelSeries CloudSync.

Roccat

Кредит: Roccat

Как называется программное обеспечение Roccat RGB?

Система освещения Roccat RGB называется AIMO.

Какие продукты поддерживает система освещения AIMO?

AIMO доступен для новейших мышей, клавиатур и наушников Roccat.

Сколько цветов предлагает система освещения AIMO?

AIMO поддерживает спектр до 16.8 миллионов цветов.

Поддерживает ли система освещения AIMO игровые профили?

Нет. AIMO не поддерживает игровые профили освещения RGB.

Кредит: Фергус Халлидей | IDG

Поддерживает ли система освещения AIMO макросы?

Да. AIMO поддерживает макросы.

Поддерживает ли система освещения AIMO индивидуальную настройку для каждой клавиши?

Да. Система освещения AIMO поддерживает индивидуальную настройку клавиш.

Поддерживает ли система освещения AIMO совместное использование ваших собственных предустановок?

№Система освещения AIMO не поддерживает совместное использование пользовательских предустановок в традиционном смысле.

Corsair

Кредит: Corsair

Как называется программное обеспечение Corsair RGB?

Система освещения Corsair RGB называется iCue.

Какие продукты поддерживает система освещения Corsair iCue?

iCue доступен для гарнитур Corsair, мышей, клавиатур, чехлов, ковриков для мыши, вентиляторов, оперативной памяти, подставок для гарнитур, кулеров ЦП и блоков питания.

Сколько цветов предлагает система освещения Corsair iCue?

Corsair iCue поддерживает диапазон до 16.8 миллионов цветов.

Кредит: Corsair

Поддерживает ли система освещения Corsair iCue игровые профили?

Corsair iCue поддерживает игровые профили освещения RGB. Он также может похвастаться автоматическими внутриигровыми световыми эффектами для некоторых игр, включая Far Cry 5.

Поддерживает ли система освещения iCue макросы?

Да. Corsair iCue поддерживает макросы.

Кредит: Corsair

Поддерживает ли система освещения iCue индивидуальную настройку клавиш?

Да.Система освещения Corsair iCue поддерживает индивидуальную настройку каждой клавиши.

Поддерживает ли система освещения iCue совместное использование ваших собственных предустановок?

Да. Система освещения Corsair iCue поддерживает совместное использование пользовательских предустановок.

Alienware

Кредит: Alienware

Как называется программное обеспечение Alienware RGB?

Система освещения Alienware RGB называется AlienFX.

Какие продукты поддерживает система освещения Alienware AlienFX?

AlienFX доступен на гарнитурах, мышах, клавиатурах, чехлах, мониторах, настольных компьютерах и ноутбуках Alienware.

Сколько цветов предлагает система освещения Alienware AlienFX?

AlienFX поддерживает спектр до 16,8 миллионов цветов.

Поддерживает ли система освещения AlienFX игровые профили?

Да. AlienFX поддерживает игровые профили освещения RGB.

Кредит: Alienware

Поддерживает ли система освещения AlienFX макросы?

Нет. AlienFX не поддерживает макросы.

Поддерживает ли система освещения AlienFX индивидуальную настройку клавиш?

№Система освещения Alienware AlienFX не поддерживает индивидуальную индивидуальную настройку, поскольку она разделяет освещение на «зоны».

Поддерживает ли система освещения AlienFX совместное использование ваших собственных предустановок?

Да. Система освещения Alienware AlienFX поддерживает совместное использование пользовательских предустановок.

ThermalTake

Кредит: ThermalTake

Как называется программное обеспечение ThermalTake RGB?

Система освещения RGB ThermalTake называется TT X1 RGB SYNC.

Какие продукты поддерживает система освещения TT ​​X1 RGB SYNC?

TT X1 RGB SYNC доступен на гарнитурах, мышах, клавиатурах, корпусах, вентиляторах, процессорных кулерах и источниках питания ThermalTake.

Кредит: ThermalTake

Сколько цветов предлагает система освещения TT ​​X1 RGB SYNC?

TT X1 RGB SYNC поддерживает спектр до 16,8 миллионов цветов.

Поддерживает ли система освещения TT ​​X1 RGB SYNC игровые профили?

Да. TT X1 RGB SYNC поддерживает игровые профили освещения RGB. Он также поддерживает голосовое управление через мобильное приложение.

Кредит: ThermalTake

Поддерживает ли система освещения TT ​​X1 RGB SYNC макросы?

Да.TT X1 RGB SYNC поддерживает макросы.

Поддерживает ли система освещения TT ​​X1 RGB SYNC индивидуальную настройку клавиш?

Да. Система освещения TheT X1 RGB SYNC поддерживает настройку каждой клавиши.

Подробнее RGB-освещение будущего можно (и нужно) стандартизировать

Поддерживает ли система освещения TT ​​X1 RGB SYNC совместное использование ваших собственных предустановок?

Да. Система освещения TT ​​X1 RGB SYNC поддерживает совместное использование пользовательских предустановок.

Какая система освещения RGB лучше всего подходит для игр

На самом деле не существует универсальной лучшей системы освещения RGB.Ваш индивидуальный опыт в конечном итоге будет варьироваться и зависеть от функций, которые вы делаете, но не заботитесь. Чтобы упростить задачу, мы составили диаграмму ниже, в которой резюмируются важные различия между каждой экосистемой освещения.

Кредит: Фергус Халлидей | IDG

Подпишитесь на рассылку новостей!

Ошибка: проверьте свой адрес электронной почты.

Теги RGB-освещениеRGB-освещениеROG AurasyncAIMOPrism SynciCueRazer ChromaLightsyncTT RGB

.

How to RGB: Руководство для сборщика систем по RGB-освещению ПК

How to RGB: A system builder’s guide to RGB PC lighting

Марк Уолтон

Corsair есть за что ответить.

В 2014 году специалист по запчастям для ПК представил первую в мире механическую клавиатуру с переключателями Cherry MX RGB. Идея, по словам Corsair, заключалась в том, чтобы обеспечить максимальную настройку клавиатуры путем индивидуальной подсветки каждой клавиши светодиодом, способным отображать один из 16,8 миллионов цветов. В сочетании с некоторым программным обеспечением, входящим в комплект поставки, пользователи могли подсвечивать клавиши WASD другим цветом для использования со стрелками, превращать ряд цифровых клавиш в таймер охлаждения в реальном времени или превращать всю клавиатуру в яркий музыкальный визуализатор.К сожалению для Corsair, комплектное программное обеспечение было настолько плохим, что большинство людей просто настроили клавиатуру на максимально возможный эффект радуги и покончили с этим.

Это подводит нас к текущему состоянию ПК для энтузиастов. То, что началось с одной клавиатуры, превратилось в индустрию компонентов, периферийных устройств и корпусов с поддержкой RGB, предназначенных для максимального уровня радужной ерунды. Действительно, наряду с добавлением боковых панелей из закаленного стекла, освещение RBG было де-факто тенденцией на 2017 год — настолько, что сложнее найти компоненты без технологии , чем с ней.

Однако до недавнего времени заставить все эти компоненты RGB работать вместе было утомительно. Существуют проприетарные стандарты, такие как Corsair Cue, дурацкие разъемы, подобные тем, что есть на RGB-полосах Phanteks, и компоненты, для работы которых требуются специальные коммутационные коробки, например привлекательные вентиляторы Riing от Thermaltake. Что изменилось, так это то, что производители материнских плат наконец-то дошли до интеграции стандартизованных разъемов и контроллеров RGB в свои материнские платы, обеспечивая центральный концентратор для всех компонентов RGB и — с помощью программного обеспечения — способ синхронизировать их все вместе для всех. манера ярких визуальных эффектов.

Хотя я лично никогда не был поклонником яркой эстетики геймеров, в духе пробования чего-то нового, когда индустрия достигает пика RGB, я пробую RGB. И не просто старые RGB. Я собрал коллекцию самых больших и лучших компонентов RGB, которые может предложить отрасль, от материнских плат и памяти до клавиатур и мониторов (да, есть мониторы с подсветкой RGB). И даже если вам не нравятся раздутые рабочие столы, как мы надеемся, это руководство должно объяснить, есть способы сделать со вкусом системы RGB, которые не превращаются во взрывы красочной рвоты единорога.

Давайте поговорим о стандартах

Вопреки тому, во что вы могли бы поверить некоторые производители компонентов, существует что-то вроде стандарта для освещения RGB, которое возникло из-за его использования в домашних интерьерах, а не в настольных компьютерных системах. Это простой четырехпроводной разъем с вилкой и розеткой, с проводами, разделенными на красный, зеленый и синий сигналы (следовательно, RGB), и линия 12 В для питания. Большинство светодиодных лент для дома используют разъем, на котором обычно есть стрелка, указывающая, какой провод является проводом 12 В.Это имеет значение, потому что некоторые производители компонентов решили реализовать свою собственную версию стандарта RGB, который часто меняет порядок подключения, даже если сам разъем идентичен.

Вентиляторы MasterFan Pro CoolerMaster Enlarge / CoolerMaster используют PWM-заголовок и стандартный четырехконтактный RGB-заголовок для широкой совместимости.

Марк Уолтон

Характеристики системы RGB
процессор Intel Core i9-7900K @ 4,5 ГГц
RAM Corsair Vengeance RGB DDR4 @ 3200 МГц
Жесткий диск Corsair MP500 480 ГБ M.2 SSD
Материнская плата Asus ROG Strix X299 Gaming-E
Блок питания Corsair HX1200i
Охлаждение CoolerMaster MasterLiquid Pro 280
Вентилятор CoolerMaster MasterFan Pro RGB
Периферийные устройства Клавиатура Asus ROG Claymore Core, мышь ROG Pugio, монитор ROG Strix XG27VQ
Поставщики материнских плат

обычно используют стандартное соединение, хотя и в этом случае есть отличия.Gigabyte использует пятиконтактный разъем RGB, пятый контакт зарезервирован для использования со светодиодными лентами, в которых используется специальный белый светодиод, вместо того, чтобы использовать все цвета вместе для имитации белого. К счастью, для проводки используется стандартный порядок 12V GRB, который также присутствует на материнских платах Asus и MSI.

Лучший способ узнать, будут ли ваши компоненты RGB работать вместе, — это просто проконсультироваться со страницей совместимости производителя материнской платы, например Asus Aura. По большей части, все перечисленные компоненты будут использовать стандартный разъем RGB или, как в случае с полосами RGB Phantek, могут быть преобразованы для этого с помощью легкодоступного адаптера.

На момент написания список Asus Aura расширился и теперь включает десятки различных компонентов и производителей, включая InWin, CableMod, Bitfenix, CoolerMaster и Akasa. Есть несколько корпусов со встроенной RGB-подсветкой, которые работают с программным обеспечением Asus Aura Sync, а также RGB-полосы, вентиляторы корпуса, кулеры и даже память и блоки питания. В большинстве компонентов для работы используется трехконтактный разъем RGB, хотя для некоторых компонентов, таких как память, он вообще не требуется. Оба Г.Память Skill RGB и память Corsair Vengeance RGB напрямую взаимодействуют с материнской платой, что обеспечивает чистую установку (для памяти Geil, напротив, требуется проложить неприглядный кабель к каждой карте памяти).

Corsair Enlarge / RGB-память Corsair управляется с материнской платы, что позволяет избежать некрасивого прокладки кабелей.

Марк Уолтон

Большинство материнских плат поставляются с двумя разъемами RGB, каждый из которых обеспечивает питание 12 В. Однако, если у вас очень большой корпус ПК, который вы планируете заполнить несколькими вентиляторами RGB, для каждого из которых требуется собственный заголовок, это быстро становится проблемой.Некоторые вентиляторы, такие как серия In Win Aurora, могут быть соединены гирляндной цепочкой, но для этого требуется отдельная коммутационная коробка, чтобы обеспечить питание и избежать перегрузки 12-вольтового соединения на материнской плате. Сторонние решения, такие как LSB01 от Silverstone, также являются вариантом, который разделяет один заголовок RGB на восемь, обеспечивая дополнительную мощность через разъем Molex.

К сожалению, LSB01 стоит изрядно 35 долларов, но он поставляется с парой светодиодных лент RGB. Более дешевый вариант, если у вас более скромные потребности, — разделить заголовки RGB на две части.Такие кабели, как этот четырехконтактный разветвитель от Amazon, который стоит всего 5 долларов на двоих, работают отлично.

Изображение листинга: Марк Уолтон

.

RGB Guide | РетроRGB

Руководство по максимально эффективному использованию ваших ретро-консолей

Вот справочная страница обо всем, что вам нужно, чтобы максимально эффективно использовать классические консоли. Некоторые вещи могут сбивать с толку, но придерживайтесь этого, так как в конце концов все сложится вместе!

Обратите внимание, что этот сайт написан американцем, поэтому большинство ссылок относится к материалам, связанным с США. Я по-прежнему старался включать информацию, имеющую отношение к миру, насколько мог.

Итак, вы готовы полностью изменить внешний вид ваших старых консолей, как на картинке выше ??? Давайте начнем!

Резюме:

RGB — лучший сигнал, который вы можете получить от большинства классических консолей.Чтобы отображать ваши системы в RGB, вам как минимум понадобятся специальные кабели, а в некоторых случаях — модификации оборудования. Затем вам нужно будет выбрать способ отображения RGB, которым может быть что угодно, от монитора RGB до нового телевизора высокой четкости. Наконец, вам понадобится способ подключить вашу систему к дисплею. Я объясню все это в простых руководствах, но сохраню раздел, описывающий каждую отдельную игровую консоль, до конца:

1) Введение в RGB. Если вы не знакомы с RGB, прочтите эту страницу.

2) SYNC — Каждый должен прочитать раздел, описывающий, что такое SYNC. Даже люди, которые уже знакомы с RGB, могут найти его полезным!

3) Как отображать RGB на вашем телевизоре. Теперь, когда вы понимаете RGB, вам нужно решить, как лучше всего отображать его. Я рекомендую мониторы с RGB-подсветкой, но в этом разделе описаны практически все варианты.

4) От SCART к вашему дисплею. В этом разделе представлены кабели и разъемы, которые вам понадобятся для перехода от игровой системы с выводом RGB к вашему дисплею RGB.

5) Переключатели RGB — в этом разделе описываются различные варианты для SCART и других переключателей RGB, поэтому вы можете использовать несколько консолей на одном дисплее.

6) Информация о консоли и моды — После того, как вы закончите со всем вышеизложенным, вы можете перейти к последнему разделу: «Информация о консоли и моды». В этом разделе подробно описывается каждая консоль и объясняется, как лучше всего получить RGB из каждой системы. Не забудьте добавить эту страницу в закладки, так как на ней есть почти все необходимое для каждой системы


Заключение

У меня скоро появятся обучающие видео, которые, надеюсь, помогут сделать это менее запутанным, но пока я надеюсь, что это руководство укажет вам направление, которое лучше всего соответствует вашим потребностям.Если вы все еще не уверены, хотите ли вы вкладывать средства в использование своих консолей через RGB, может быть, попробуйте найти решение где-нибудь посередине? Если ничего другого, может быть, просто выберите хороший ЭЛТ потребительского уровня, чтобы, по крайней мере, вам не пришлось беспокоиться о задержках, масштабировании или каких-либо специальных адаптерах.

Пожалуйста, не стесняйтесь заглядывать на другие страницы этого сайта, ведь есть еще масса ретро-шедевров, которыми можно поделиться!

.

Как управлять системой освещения RGB

Чтобы настроить параметры светодиода, дважды щелкните программу Thermaltake RGB Plus на рабочем столе.

  1. Чтобы включить или отключить компонент, вы можете щелкнуть зеленый или красный значок рядом с именем вентилятора.
  2. Вы можете изменить скорость вентилятора, выбрав режимы «Производительность», «Без звука» или «ШИМ» или перетащив вкладку влево и вправо на ползунках.
  3. Слева вы можете изменить световой эффект светодиода, цветовой режим, а также скорость эффекта.
  4. Нажав «Цвет», вы можете указать точные значения цвета. Вы можете выбрать, какой отдельный светодиод на вентиляторе нужно настроить, а также цвет этого светодиода, щелкнув значки с пронумерованными кружками. Щелкнув лампочку, вы можете включать и выключать светодиодное освещение. Вы можете изменить яркость светодиода с помощью ползунка внизу.
  5. Чтобы настроить другое устройство, щелкните другую прямоугольную панель, чтобы выбрать ее.

    Когда закончите, просто нажмите «Готово».

    Вы можете сохранить свою конфигурацию с помощью кнопки в правом верхнем углу, а также выбрать различные профили, в которых вы, возможно, захотите сохранить ее.

.