Содержание

Понимание ООП в JavaScript [Часть 1] / Блог компании Enterra / Хабр

— Прототипное наследование — это прекрасно
JavaScript — это объектно-ориентированный (ОО) язык, уходящий корнями в язык Self, несмотря на то, что внешне он выглядит как Java. Это обстоятельство делает язык действительно мощным благодаря некоторым приятным особенностям.

Одна из таких особенностей — это реализация прототипного наследования. Этот простой концепт является гибким и мощным. Он позволяет сделать наследование и поведение сущностями первого класса, также как и функции являются объектами первого класса в функциональных языках (включая JavaScript).

К счастью, в ECMAScript 5 появилось множество вещей, которые позволили поставить язык на правильный путь (некоторые из них раскрыты в этой статье). Также будет рассказано о недостатках дизайна JavaScript и будет произведено небольшое сравнение с классической моделью прототипного ОО (включая его достоинства и недостатки).

Статья предполагает, что вы уже знакомы с основами JavaScript, имеете представление о функциях (включая концепты замыкания и функций первого класса), примитивных значениях, операторах и т.д.

1. Объекты

Объект в JavaScript — это просто коллекция пар ключ-значение (и иногда немного внутренней магии).

Однако, в JavaScript нет концепции класса. К примеру, объект с свойствами {name: Linda, age: 21} не является экземпляром какого-либо класса или класса Object. И Object, и Linda являются экземплярами самих себя. Они определяются непосредственно собственным поведением. Тут нет слоя мета-данных (т.е. классов), которые говорили бы этим объектам как нужно себя вести.

Вы можете спросить: «Да как так?», особенно если вы пришли из мира классических объектно-ориентированных языков (таких как Java или C#). «Но если каждый объект обладает собственным поведением (вместо того чтобы наследовать его от общего класса), то если у меня 100 объектов, то им соответствует 100 разных методов? Разве это не опасно? А как мне узнать, что, например, объект действительно является

Array-ем?»

Чтобы ответить на все эти вопросы необходимо забыть о классическом ОО-подходе и начать всё с нуля. Поверьте, оно того стоит.

Модель прототипного ОО приносит несколько новых динамичных и экспрессивынх путей решения старых проблем. В ней также представлены мощные модели расширения и повторного использования кода (а это и интересует людей, которые говорят об объектно-ориентированном программировании). Однако, эта модель даёт меньше гарантий. Например, нельзя полагаться, что объект

x всегда будет иметь один и тот же набор свойств.

1.1. А что такое объекты?

Ранее упоминалось, что объекты — это просто пары уникальных ключей с соответствующими значениями — такие пары называются свойства. К примеру, вы хотите описать несколько аспектов своего старого друга (назовём его Мишей, он же Mikhail), таких как возраст, имя и пол:

Объект в JavaScript создаётся с помощью функции Object.create. Эта функция из родителя и опционального набора свойств создаёт новую сущность. Пока что мы не будем беспокоиться о параметрах.

Пустой объект — это объект без родителя, без свойств. Посмотрим на синтакс создания такого объекта в JavaScript:

var mikhail = Object.create(null)
1.2. Создание свойств

Так, значит у нас уже есть объект, но у него пока нет свойств — мы должны исправить эту ситуацию для описания нашего объекта Mikhail.

Свойства в JavaScript являются динамическими. Это означает, что мы их можем создавать или удалять в любое время. Свойства уникальны в том смысле, что ключ свойства внутри объекта соответствует ровно одному значению.

Создадим новые свойства через функцию Object.defineProperty, которая в качестве аргументов использует объект, имя свойства для создания и дескриптор, описывающий семантику свойства.

Object.defineProperty(mikhail, 'name', { value:        'Mikhail'
                                       , writable:     true
                                       , configurable: true
                                       , enumerable:   true })

Object.defineProperty(mikhail, 'age', { value:        19
                                      , writable:     true
                                      , configurable: true
                                      , enumerable:   true })

Object.defineProperty(mikhail, 'gender', { value:        'Male'
                                         , writable:     true
                                         , configurable: true
                                         , enumerable:   true })

Функция Object.defineProperty создаёт новое свойство, если свойство с данным ключём ранее не существовало (в противном случае произойдёт обновление семантики и значения существующего свойства).

Кстати, вы также можете использовать Object.defineProperties когда необходимо добавить больше одного свойства в объект:

Object.defineProperties(mikhail, { name:   { value:        'Mikhail'
                                           , writable:     true
                                           , configurable: true
                                           , enumerable:   true }

                                 , age:    { value:        19
                                           , writable:     true
                                           , configurable: true
                                           , enumerable:   true }

                                 , gender: { value:        'Male'
                                           , writable:     true
                                           , configurable: true
                                           , enumerable:   true }})

Очевидно, что оба вызова аналогичны, они вполне конфигурируемы, но не предназначены для конечного пользователя кода. Лучше создать уровень абстракции над ними.
1.3. Дескрипторы

Маленькие объекты, которые содержат в себе семантику, называются дескрипторами (мы их использовали при вызове
Object.defineProperty
). Дескрипторы бывают одного из двух типов — дескрипторы данных и дескрипторы доступа.

Оба типа дескрипторов содержат флаги, которые определяют как свойство будет рассматриваться языком. Если флаг не установлен, то его значение по умолчанию false (к сожалению это не всегда хорошее значение по умолчанию, что влечёт возрастание объёма описания дескрипторов).

Рассмотрим некоторые флаги:

  • writable — значение свойства может быть изменено, используется только для дескрипторов данных.
  • configurable — тип свойства может быть изменён или свойство может быть удалено.
  • enumerable — свойство используется в общем перечислении.
    Дескрипторы данных таковы, что определяют конкретное значение, которое соответствует дополнительному value-параметру, описывающему конкретные данные, привязанные к свойству:
  • value — значение свойства

Дескрипторы доступа определяют доступ к конкретному значению через getter-ы и setter-ы функций. Если не установлены, то по умолчанию равны undefined.

  • get() — функция вызывается без аргументов, когда происходит запрос к значению свойства.
  • set(new_value) — функция вызывается с аргументом — новым значением для свойства, когда пользователь пытается

модифицировать значение свойства.
1.4. Стремимся к лаконичности

К счастью, дескрипторы свойств — это не единственный путь работать со свойствами в JavaScript — их можно создавать более лаконично.

JavaScript также понимает ссылки на свойства, используя так называемую скобочную запись. Основное правило записывается следующим образом:

<bracket-access> ::= <identifier> "[" <expression> "]"

Тут identifier — это переменная, которая хранит объект, содержащий свойство, значение которого мы хотим установить, а expression — любое валидное JavaScript-выражение, определяющее имя свойства. Нет ограничений на то, какое имя может иметь свойство, всё позволяется.

Таким образом, мы можем переписать предыдущий пример:

mikhail['name']   = 'Mikhail'
mikhail['age']    = 19
mikhail['gender'] = 'Male'

На заметку: все имена свойств в конечном счёте конвертируются в строку, т.е. записи object[1], object[[1]], object[‘1’] и object[variable] (где значение variable равно 1) эквивалентны.

Существует другой способ обращения к свойству, который называется точечной записью. Он выглядит проще и лаконичнее, чем скобочная альтернатива. Однако, при этом способе имя свойство должно соответствовать правилам валидного JavaScript-идентификатора и не может быть представлено выражением (т.е. нельзя использовать переменные).

Общее правило для точечной записи:

<dot-access> ::= <identifier> "." <identifier-name>

Таким образом, предыдущий пример стал ещё более красивым:
mikhail.name   = 'Mikhail'
mikhail.age    = 19
mikhail.gender = 'Male'

Оба варианта синтаксиса выполняют эквивалентный процесс создания свойств, с выставлением семантических флагов в значение true.
1.5. Доступ к свойствам

Очень просто получить значение, хранящиеся в заданном свойстве — синтаксис очень похож на создание свойства с той лишь разницей, что в нём нет присваивания.
Например, если мы хотим узнать возраст Миши, то мы напишем:
mikhail['age'] // => 19

Но если мы попробуем получить значение свойства, которого не существует в нашем объекте, то мы получим undefined:
mikhail['address']
// => undefined
1.6. Удаление свойств

Для удаления свойства из объекта в JavaSCript предусмотрен оператор delete. К примеру, если вы хотите удалить свойство gender из нашего объекта mikhail:
delete mikhail['gender']
// => true

mikhail['gender']
// => undefined

Оператор delete вернёт true, если свойство удалено, и falseв противном случае. Не будем углубляться в то, как работает этот оператор. Но если вам всё-таки интересно, то вы можете почитать самую прекрасную статью о том как работает delete.
1.6. Getter-ы и setter-ы

Getter-ы и setter-ы обычно используются в классических объектно-ориентированных языках для обеспечения инкапсуляции. Они не особо нужны в JavaScript, но, у нас динамический язык, и я против этой функциональности.

Но, с любой точки зрения, они позволяет обеспечить proxy для запросов на чтение и запись свойств. Например, у нас были отдельные слоты для имени и фамилии, но мы хотим иметь удобный способ читать и устанавливать их.

Для начала, создадим имя и фамилию нашего друга, описав соответствующие свойства:

Object.defineProperty(mikhail, 'first_name', { value:    'Mikhail'
                                             , writable: true })

Object.defineProperty(mikhail, 'last_name', { value:    'Weiß'
                                            , writable: true })

Затем мы опишем общий способ получения и установки сразу двух свойств за один раз — назовём их объединение name:
// () → String
// Returns the full name of object.
function get_full_name() {
    return this.first_name + ' ' + this.last_name
}

// (new_name:String) → undefined
// Sets the name components of the object, from a full name.
function set_full_name(new_name) { var names
    names = new_name.trim().split(/\s+/)
    this.first_name = names[⁣'0'] || ''
    this.last_name  = names['1'] || ''
}

Object.defineProperty(mikhail, 'name', { get: get_full_name
                                       , set: set_full_name
                                       , configurable: true
                                       , enumerable:   true })

Теперь, каждый раз когда мы попытаемся узнать значение свойства name нашего друга на самом деле вызовется функция get_full_name:
mikhail.name
// => 'Mikhail Weiß'

mikhail.first_name
// => 'Mikhail'

mikhail.last_name
// => 'Weiß'

mikhail.last_name = 'White'
mikhail.name
// => 'Mikhail White'

Мы также можем установить name объекта, обратившись к соответствующему свойству, но на самом деле вызов set_full_name выполнит всю грязную работу:
mikhail.name = 'Michael White'

mikhail.name
// => 'Michael White'

mikhail.first_name
// => 'Michael'

mikhail.last_name
// => 'White'

Есть сценарии, в которых действительно удобно так делать, но стоит помнить, что такой механизм работает очень медленно.
Кроме того, следует учитывать что getter-ы и setter-ы обычно используются в других языках для инкапсуляции, а в ECMAScript 5 вы всё ещё не можете так делать — все свойства объекта являются публичными.
1.8. Перечисление свойств

Ввиду того, что свойства являются динамическими, JavaScript обеспечивает функционал по проверке набора свойств объекта. Существует два способа перечисления всех свойств объекта, зависящих от того, какой вид свойств вас интересует.

Первый способ заключается в вызове функции Object.getOwnPropertyNames, которая вернёт вам Array, содержащий имена всех свойств, установленных для данного объекта — мы будет называть эти свойства собственными. Например, посмотрим, что мы знаем о Мише:

Object.getOwnPropertyNames(mikhail)
// => [ 'name', 'age', 'gender', 'first_name', 'last_name' ]

Второй способ заключается в использовании Object.keys, который вернёт список собственных свойств, которые помечены флагом enumerable :
Object.keys(mikhail)
// => [ 'name', 'age', 'gender' ]
1.9. Литералы

Простой способ создать объект заключается в использовании литерального синтаксиса JavaScript. Литеральный объект определяет новый объект, родитель которого Object.prototype (о родителях поговорим немного позже).

В любом случае, синтаксис литеральных объектов позволяет определять простые объекты и инициализировать их свойства. Перепишем пример создания объекта Mikhail:

var mikhail = { first_name: 'Mikhail'
              , last_name:  'Weiß'
              , age:        19
              , gender:     'Male'

              // () → String
              // Returns the full name of object.
              , get name() {
                    return this.first_name + ' ' + this.last_name }

              // (new_name:String) → undefined
              // Sets the name components of the object,
              // from a full name.
              , set name(new_name) { var names
                    names = new_name.trim().split(/\s+/)
                    this.first_name = names['0'] || ''
                    this.last_name  = names['1'] || '' }
              }

Невалидные имена свойств могут быть заключены в кавычки. Учитывайте, что запись для getter/setter в литеральном виде определяется анонимными функциями. Если вы хотите связать ранее объявленную функцию с getter/setter, то вы должны использовать метод Object.defineProperty.

Посмотрим на общее правила литерального синтаксиса:

<object-literal>  ::= "{" <property-list> "}"
                    ;
<property-list>   ::= <property> ["," <property>]*
                    ;
<property>        ::= <data-property>
                    | <getter-property>
                    | <setter-property>
                    ;
<data-property>   ::= <property-name> ":" <expression>
                    ;
<getter-property> ::= "get" <identifier>
                    :       <function-parameters>
                    :       <function-block>
                    ;
<setter-property> ::= "set" <identifier>
                    :       <function-parameters>
                    :       <function-block>
                    ;
<property-name>   ::= <identifier>
                    | <quoted-identifier>
                    ;

Литеральные объекты могут появляться внутри выражений в JavaScript. Из-за некоторой неоднозначности новички иногда путаются:
// This is a block statement, with a label:
{ foo: 'bar' }
// => 'bar'

// This is a syntax error (labels can't be quoted):
{ "foo": 'bar' }
// => SyntaxError: Invalid label

// This is an object literal (note the parenthesis to force
// parsing the contents as an expression):
({ "foo": 'bar' })
// => { foo: 'bar' }

// Where the parser is already expecting expressions,
// object literals don't need to be forced. E.g.:
var x = { foo: 'bar' }
fn({foo: 'bar'})
return { foo: 'bar' }
1, { foo:
2. Методы

До сих пор объект Mikhail имел только слоты для хранения данных (ну, за исключением getter/setter для свойства name). Описание действий, которые можно делать с объектом делается в JavaScript очень просто. Просто — потому что в JavaScript нет разницы между манипулированием такими вещами, как Function, Number, Object. Всё делается одинаково (не забываем, что функции в JavaScript являются сущностями первого класса).

Опишем действие над данным объектом, просто установив функцию, как значение нашего свойства. К примеру, мы хотим, чтобы Миша мог приветствовать других людей:

// (person:String) → String
// Greets a random person
mikhail.greet = function(person) {
    return this.name + ': Why, hello there, ' + person + '.'
}

После выставления значения свойства, мы можем использовать аналогичный способ для выставления конкретных данных, связанных с объектом. Таким образом, доступ к свойствам будет возвращать ссылку на функцию, хранящуюся в нём, которую мы можем вызвать:
mikhail.greet('you')
// => 'Michael White: Why, hello there, you.'

mikhail.greet('Kristin')
// => 'Michael White: Why, hello there, Kristin.'
2.1. Динамический this

Следует учитывать одну вещь при описании функции greet — эта функция должна обращаться к getter/setter свойства name, а для этого она использует магическую переменную this.

Она хранит в себе ссылку на объект, которому принадлежит исполняющаяся функция. Это не обязательно означает, что this всегда равно объекту, в котором функция хранится. Нет, JavaScript не настолько эгоистичен.

Функции являются generic-ами. Т.е. в JavaScript переменная this определяет динамическую ссылку, которая разрешается в момент исполнения функции.

Процесс динамического разрешения this обеспечивает невероятно мощный механизм для динамизации объектной ориентированности JavaScript и компенсирует отсутствие строгого соответствия заданным структурам (т.е. классам). Это означает, что можно применить функцию к любому объекту, который отвечает требованиям запуска, независимо от того, как устроен объект (как и в CLOS).

2.2. Разрешение this

Существует четыре различных способа разрешения this в функции, зависящие от того, как функция вызывается: непосредственно, как метод, явно применяется, как конструктор. Мы посмотрим первые три, а к конструкторам вернёмся позже.

Для следующих примеров вы примем:

// Returns the sum of the object's value with the given Number
function add(other, yet_another) {
    return this.value + other + (yet_another || 0)
}

var one = { value: 1, add: add }
var two = { value: 2, add: add }
2.2.1 Вызов как метод

Если функция вызывается, как метод объекта, то this внутри функции ссылается на сам объект. Т.е. когда мы явно указываем какой объект выполняет действие, то объект и будет значением this в нашей функции.

Это произойдёт, когда мы вызовем mikhail.greet(). Эта запись говорит JavaScript-у, что мы хотим применить действие greet к объекту mikhail.

one.add(two.value) // this === one
// => 3

two.add(3)         // this === two
// => 5

one['add'](two.value) // brackets are cool too
// => 3
2.2.2 Непосредственный вызов

Когда функция вызывается непосредственно, то this разрешается в глобальный объект движка (window в браузере, global в Node.js)
add(two.value)  // this === global
// => NaN

// The global object still has no `value' property, let's fix that.
value = 2
add(two.value)  // this === global
// => 4
2.2.3. Явное применение

В заключении, функция может быть явно применена к любому объекту, несмотря на то, есть ли в объекте соответствующее свойство или нет. Эта функциональность достигается с помощью методов call или apply.

Различие между двумя методами заключается в параметрах передаваемых в функцию и времени исполнения — apply работает примерно в 55 раз медленнее, чем непосредственный вызов, а вот call обычно не особо хуже. Всё очень зависит от текущего движка, так что используйте Perf test, чтобы быть уверенными — не оптимизируйте код раньше времени.

В любом случае, call ожидает объект, как первый параметр функции, за которым следуют обычные аргументы исходной функции:

add.call(two, 2, 2)      // this === two
// => 6

add.call(window, 4)      // this === global
// => 6

add.call(one, one.value) // this === one
// => 2

С другой стороны, apply позволяет описывать вторым параметром массив параметров исходной функции:
add.apply(two, [2, 2])       // equivalent to two.add(2, 2)
// => 6

add.apply(window, [ 4 ])       // equivalent to add(4)
// => 6

add.apply(one, [one.value])  // equivalent to one.add(one.value)
// => 2

На заметку. Учтите, что разрешение this в null или undefined зависит от семантики используемого движка. Обычно результат бывает таким же, как и применение функции к глобальному объекту. Но если движок работает в strict mode, то this будет разрешено как и ожидается — ровно в ту вещь, к которой применяется:
window.value = 2
add.call(undefined, 1) // this === window
// => 3

void function() {
  "use strict"
  add.call(undefined, 1) // this === undefined
  // => NaN
  // Since primitives can't hold properties.
}()
2.3. Связывание методов

Отвлечёмся от динамической сущности функций в JavaScript, пойдём по пути создания функций, связывая их с определёнными объектами, так чтобы this внутри функции всегда указывал на данный объект, несмотря на то, как он вызывается — как метод объекта или непосредственно.

Функция обеспечивает функциональность, называемую bind: берётся объект и дополнительный параметр (очень похоже на вызов call) и возвращается новая функция, которая будет применять параметры к исходной функции при вызове:

var one_add = add.bind(one)

one_add(2) // this === one
// => 3

two.one_adder = one_add
two.one_adder(2) // this === one
// => 3

one_add.call(two) // this === one
// => 3
3. Наследование

До сих пор мы видели, как объекты могут определять своё поведение и как мы можем использовать их действия на других объектах, но, мы до сих пор не увидели нормального пути для повторного использования кода и его расширяемости.

Вот тут-то нам и пригодится наследование. Оно позволит разделить задачи, в которых объекты определяют специализированное поведение от создания общего поведения для других объектов.

Модель прототипирования идёт дальше. Хоть она и поддерживает такие технологии, как «selective extensibility» и «behaviour sharing», но мы их не будем особо изучать. Печальная вещь: конкретные модели прототипного ОО, реализованные в JavaScript несколько ограниченны. Мы можем обойти эти ограничения, но накладные расходы будут велики.

3.1. Прототипы

Наследование в JavaScript осуществляется через клонирование поведения объекта и расширение его специализированным поведением. Объект, поведение которого клонируют, называется прототипом.

Прототип — это обычный объект, который делится своим поведением с другими объектами — в этом случае он выступает в качестве родителя.

Концепт клонирования поведения не означает, что вы будете иметь две различные копии одной и той же функции или данных. На самом деле JavaScript реализует наследование через делегирование, т.е. все свойства хранятся в родителе, а доступ к ним расширен через ребёнка.

Как упоминалось ранее, родитель (или [[Prototype]]) объекта определяется вызовом Object.create с первым аргументом, ссылающимся на объект-родитель.

Вернёмся к примеру с Мишей. Выделим его имя и способность приветствовать людей в отдельный объект, который поделится с Мишей своим поведением. Вот как будет выглядеть наша модель:

Реализуем её на JavaScript:

var person = Object.create(null)

// Here we are reusing the previous getter/setter functions
Object.defineProperty(person, 'name', { get: get_full_name
                                      , set: set_full_name
                                      , configurable: true
                                      , enumerable:   true })

// And adding the `greet' function
person.greet = function (person) {
    return this.name + ': Why, hello there, ' + person + '.'
}

// Then we can share those behaviours with Mikhail
// By creating a new object that has it's [[Prototype]] property
// pointing to `person'.
var mikhail = Object.create(person)
mikhail.first_name = 'Mikhail'
mikhail.last_name  = 'Weiß'
mikhail.age        = 19
mikhail.gender     = 'Male'

// And we can test whether things are actually working.
// First, `name' should be looked on `person'
mikhail.name
// => 'Mikhail Weiß'

// Setting `name' should trigger the setter
mikhail.name = 'Michael White'

// Such that `first_name' and `last_name' now reflect the
// previously name setting.
mikhail.first_name
// => 'Michael'
mikhail.last_name
// => 'White'

// `greet' is also inherited from `person'.
mikhail.greet('you')
// => 'Michael White: Why, hello there, you.'

// And just to be sure, we can check which properties actually
// belong to `mikhail'
Object.keys(mikhail)
// => [ 'first_name', 'last_name', 'age', 'gender' ]
3.2 Но как же [⁣[Prototype]⁣] работает?

Как вы видели в прошлом примере, ни одно из свойств, определённых в Person мы не определяли явно в Mikhail, но всё же смогли получить к ним доступ. Это произошло благодаря тому, что JavaScript реализует делегирование доступа к свойствам, т.е. свойство ищется через всех родителей объекта.

Эта цепь родителей определяется скрытым слотом в каждом объекте, который называется [⁣[Prototype]⁣]. Вы не можете изменить его непосредственно, существует только один способ задать ему значение — при создании нового объекта.

Когда свойство запрашивается из объекта, движок сначала пытается получить свойство из целевого объекта. Если свойство не найдено, то рассматривается непосредственный родитель объекта, затем родитель родителя и т.д.

Это означает, что мы можем изменить поведение прототипа в середине программы, то автоматически изменится поведение всех объектов, которые были от него унаследованы. Например, пусть мы хотим изменить приветствие по умолчанию:

// (person:String) → String
// Greets the given person
person.greet = function(person) {
    return this.name + ': Harro, ' + person + '.'
}

mikhail.greet('you')
// => 'Michael White: Harro, you.'
3.3. Перегрузка свойств

Так, прототипирование (т.е. наследование) используется для того, чтобы можно было поделиться данными с другими объектами. Причём этот способ работает быстро и экономичен по отношению к памяти, т.к. мы всегда имеем только один экземпляр используемых данных.

Но что если мы хотим добавить специализированное поведение, которым можно было бы делиться с другим объектами? Мы уже видели как объекты определяют своё поведение с помощью свойств, специализированное поведение определяется аналогичным образом — вы просто устанавливаете значение нужному свойству.

Для лучшей демонстрации положим, что Person реализует только обобщённое приветствие, а каждый наследник Person будет реализовывать своё уникальное приветствие. Также добавим новую персону в наш сценарий, чтобы лучше показать как расширяется объект:

Учтите, что и mikhail, и kristin определяют собственную версию метода greet. В этом случае мы вызовем метод greet из собственной версии поведения объекта, а не обобщённый метод greet, унаследованный от Person:

// Here we set up the greeting for a generic person

// (person:String) → String
// Greets the given person, formally
person.greet = function(person) {
    return this.name + ': Hello, ' + (person || 'you')
}

// And a greeting for our protagonist, Mikhail

// (person:String) → String
// Greets the given person, like a bro
mikhail.greet = function(person) {
    return this.name + ': \'sup, ' + (person || 'dude')
}

// And define our new protagonist, Kristin
var kristin = Object.create(person)
kristin.first_name = 'Kristin'
kristin.last_name  = 'Weiß'
kristin.age        = 19
kristin.gender     = 'Female'

// Alongside with her specific greeting manners

// (person:String) → String
// Greets the given person, sweetly
kristin.greet = function(person) {
    return this.name + ': \'ello, ' + (person || 'sweetie')
}

// Finally, we test if everything works according to the expected

mikhail.greet(kristin.first_name)
// => 'Michael White: \'sup, Kristin'

mikhail.greet()
// => 'Michael White: \'sup, dude'

kristin.greet(mikhail.first_name)
// => 'Kristin Weiß: \'ello, Michael'

// And just so we check how cool this [[Prototype]] thing is,
// let's get Kristin back to the generic behaviour

delete kristin.greet
// => true

kristin.greet(mikhail.first_name)
// => 'Kristin Weiß: Hello, Michael'

Продолжение следует…

ООП в картинках / Хабр

ООП (Объектно-Ориентированное Программирование) стало неотъемлемой частью разработки многих современных проектов, но, не смотря на популярность, эта парадигма является далеко не единственной. Если вы уже умеете работать с другими парадигмами и хотели бы ознакомиться с оккультизмом ООП, то впереди вас ждет немного лонгрид и два мегабайта картинок и анимаций. В качестве примеров будут выступать трансформеры.



Прежде всего стоит ответить, зачем? Объектно-ориентированная идеология разрабатывалась как попытка связать поведение сущности с её данными и спроецировать объекты реального мира и бизнес-процессов в программный код. Задумывалось, что такой код проще читать и понимать человеком, т. к. людям свойственно воспринимать окружающий мир как множество взаимодействующих между собой объектов, поддающихся определенной классификации. Удалось ли идеологам достичь цели, однозначно ответить сложно, но де-факто мы имеем массу проектов, в которых с программиста будут требовать ООП.

Не следует думать, что ООП каким-то чудным образом ускорит написание программ, и ожидать ситуацию, когда жители Вилларибо уже выкатили ООП-проект в работу, а жители Виллабаджо все еще отмывают жирный спагетти-код. В большинстве случаев это не так, и время экономится не на стадии разработки, а на этапах поддержки (расширение, модификация, отладка и тестирование), то бишь в долгосрочной перспективе. Если вам требуется написать одноразовый скрипт, который не нуждается в последующей поддержке, то и ООП в этой задаче, вероятнее всего, не пригодится. Однако, значительную часть жизненного цикла большинства современных проектов составляют именно поддержка и расширение. Само по себе наличие ООП не делает вашу архитектуру безупречной, и может наоборот привести к излишним усложнениям.

Иногда можно столкнуться с критикой в адрес быстродействия ООП-программ. Это правда, незначительный оверхед присутствует, но настолько незначительный, что в большинстве случаев им можно пренебречь в пользу преимуществ. Тем не менее, в узких местах, где в одном потоке должны создаваться или обрабатываться миллионы объектов в секунду, стоит как минимум пересмотреть необходимость ООП, ибо даже минимальный оверхед в таких количествах может ощутимо повлиять на производительность. Профилирование поможет вам зафиксировать разницу и принять решение. В остальных же случаях, скажем, где львиная доля быстродействия упирается в IO, отказ от объектов будет преждевременной оптимизацией.

В силу своей природы, объектно-ориентированное программирование лучше всего объяснять на примерах. Как и обещал, нашими пациентами будут трансформеры. Я не трансформеролог, и комиксов не читал, посему в примерах буду руководствоваться википедией и фантазией.

Классы и объекты


Сразу лирическое отступление: объектно-ориентированный подход возможен и без классов, но мы будем рассматривать, извиняюсь за каламбур, классическую схему, где классы — наше всё.

Самое простое объяснение: класс — это чертеж трансформера, а экземпляры этого класса — конкретные трансформеры, например, Оптимус Прайм или Олег. И хотя они и собраны по одному чертежу, умеют одинаково ходить, трансформироваться и стрелять, они оба обладают собственным уникальным состоянием. Состояние — это ряд меняющихся свойств. Поэтому у двух разных объектов одного класса мы можем наблюдать разное имя, возраст, местоположение, уровень заряда, количество боеприпасов и т. д. Само наличие этих свойств и их типы описываются в классе.

Таким образом, класс — это описание того, какими свойствами и поведением будет обладать объект. А объект — это экземпляр с собственным состоянием этих свойств.

Мы говорим «свойства и поведение», но звучит это как-то абстрактно и непонятно. Привычнее для программиста будет звучать так: «переменные и функции». На самом деле «свойства» — это такие же обычные переменные, просто они являются атрибутами какого-то объекта (их называют полями объекта). Аналогично «поведение» — это функции объекта (их называют методами), которые тоже являются атрибутами объекта. Разница между методом объекта и обычной функцией лишь в том, что метод имеет доступ к собственному состоянию через поля.

Итого, имеем методы и свойства, которые являются атрибутами. Как работать с атрибутами? В большинстве ЯП оператор обращения к атрибуту — это точка (кроме PHP и Perl). Выглядит это примерно вот так (псевдокод):

// объявление класса с помощью ключевого слова class
class Transformer(){
    // объявление поля x
    int x

    // объявление метода конструктора (сюда нам чуть ниже передадут 0)
    function constructor(int x){
        // инициализация поля x 
        // (переданный конструктору 0 превращается в свойство объекта)
        this.x = x
    }
	
    // объявление метода run
    function run(){
        // обращение к собственному атрибуту через this
        this.x += 1
    }
}

// а теперь клиентский код:

// создаем новый экземпляр трансформера с начальной позицией 0
optimus = new Transformer(0)

optimus.run() // приказываем Оптимусу бежать
print optimus.x // выведет 1
optimus.run() // приказывает Оптимусу еще раз бежать
print optimus.x // выведет 2

В картинках я буду использовать такие обозначения:

Я не стал использовать UML-диаграммы, посчитав их недостаточно наглядными, хоть и более гибкими.


Анимация №1

Что мы видим из кода?

1. this — это специальная локальная переменная (внутри методов), которая позволяет объекту обращаться из своих методов к собственным атрибутам. Обращаю внимание, что только к собственным, то бишь, когда трансформер вызывает свой метод, либо меняет собственное состояние. Если снаружи обращение будет выглядеть так: optimus.x, то изнутри, если Оптимус захочет сам обратиться к своему полю x, в его методе обращение будет звучать так: this.x, то есть «я (Оптимус) обращаюсь к своему атрибуту x«. В большинстве языков эта переменная называется this, но встречаются и исключения (например, self)

2. constructor — это специальный метод, который автоматически вызывается при создании объекта. Конструктор может принимать любые аргументы, как и любой другой метод. В каждом языке конструктор обозначается своим именем. Где-то это специально зарезервированные имена типа __construct или __init__, а где-то имя конструктора должно совпадать с именем класса. Назначение конструкторов — произвести первоначальную инициализацию объекта, заполнить нужные поля.

3. new — это ключевое слово, которое необходимо использовать для создания нового экземпляра какого-либо класса. В этот момент создается объект и вызывается конструктор. В нашем примере, конструктору передается 0 в качестве стартовой позиции трансформера (это и есть вышеупомянутая инициализация). Ключевое слово new в некоторых языках отсутствует, и конструктор вызывается автоматически при попытке вызвать класс как функцию, например так: Transformer().

4. Методы constructor и run работают с внутренним состоянием, а во всем остальном не отличаются от обычных функций. Даже синтаксис объявления совпадает.

5. Классы могут обладать методами, которым не нужно состояние и, как следствие, создание объекта. В этом случае метод делают статическим.

SRP


(Single Responsibility Principle / Принцип единственной ответственности / Первый принцип SOLID). С ним вы, наверняка, уже знакомы из других парадигм: «одна функция должна выполнять только одно законченное действие». Этот принцип справедлив и для классов: «Один класс должен отвечать за какую-то одну задачу». К сожалению с классами сложнее определить грань, которую нужно пересечь, чтобы принцип нарушался.

Существуют попытки формализовать данный принцип с помощью описания назначения класса одним предложением без союзов, но это очень спорная методика, поэтому доверьтесь своей интуиции и не бросайтесь в крайности. Не нужно делать из класса швейцарский нож, но и плодить миллион классов с одним методом внутри — тоже глупо.

Ассоциация


Традиционно в полях объекта могут храниться не только обычные переменные стандартных типов, но и другие объекты. А эти объекты могут в свою очередь хранить какие-то другие объекты и так далее, образуя дерево (иногда граф) объектов. Это отношение называется ассоциацией.

Предположим, что наш трансформер оборудован пушкой. Хотя нет, лучше двумя пушками. В каждой руке. Пушки одинаковые (принадлежат к одному классу, или, если будет угодно, выполненные по одному чертежу), обе одинаково умеют стрелять и перезаряжаться, но в каждой есть свое хранилище боеприпасов (собственное состояние). Как теперь это описать в ООП? С помощью ассоциации:

class Gun(){ // объявляем класс Пушка
    int ammo_count // объявляем количество боеприпасов

    function constructor(){ // конструктор
        this.reload() // вызываем собственный метод "перезарядить"
    }

    function fire(){ // объявляем метод пушки "стрелять"
        this.ammo_count -= 1 // расходуем боеприпас из собственного магазина
    }

    function reload(){ // объявляем метод "перезарядить"
        this.ammo_count = 10 // забиваем собственный магазин боеприпасами
    }
}

class Transformer(){ // объявляем класс Трансформер
    Gun gun_left // объявляем поле "левая пушка" типа Пушка
    Gun gun_right // объявляем поле "правая пушка" тоже типа Пушка
    
    /*
    теперь конструктор Трансформера принимает
    в качестве аргументов две уже конкретные созданные пушки,
    которые передаются извне
    */
    function constructor(Gun gun_left, Gun gun_right){
        this.gun_left = gun_left // устанавливаем левую пушку на борт
        this.gun_right = gun_right // устанавливаем правую пушку на борт
    }
    
    // объявляем метод Трансформер "стрелять", который сначала стреляет...
    function fire(){
        // левой пушкой, вызывая ее метод "стрелять"
        this.gun_left.fire()
        // а затем правой пушкой, вызывая такой же метод "стрелять"
        this.gun_right.fire()
    }
}

gun1 = new Gun() // создаем первую пушку
gun2 = new Gun() // создаем вторую пушку
optimus = new Transformer(gun1, gun2) // создаем трансформера, передавая ему обе пушки


Анимация №2

this.gun_left.fire() и this.gun_right.fire() — это обращения к дочерним объектам, которые происходят так же через точки. По первой точке мы обращаемся к атрибуту себя (this.gun_right), получая объект пушки, а по второй точке обращаемся к методу объекта пушки (this.gun_right.fire()).

Итог: робота сделали, табельное оружие выдали, теперь разберемся, что тут происходит. В данном коде один объект стал составной частью другого объекта. Это и есть ассоциация. Она в свою очередь бывает двух видов:

1. Композиция — случай, когда на фабрике трансформеров, собирая Оптимуса, обе пушки ему намертво приколачивают к рукам гвоздями, и после смерти Оптимуса, пушки умирают вместе с ним. Другими словами, жизненный цикл дочернего объекта совпадает с жизненным циклом родительского.

2. Агрегация — случай, когда пушка выдается как пистолет в руку, и после смерти Оптимуса этот пистолет может подобрать его боевой товарищ Олег, а затем взять в свою руку, либо сдать в ломбард. То бишь жизненный цикл дочернего объекта не зависит от жизненного цикла родительского, и может использоваться другими объектами.

Ортодоксальная ООП-церковь проповедует нам фундаментальную троицу — инкапсуляцию, полиморфизм и наследование, на которых зиждется весь объектно-ориентированный подход. Разберем их по порядку.

Наследование


Наследование — это механизм системы, который позволяет, как бы парадоксально это не звучало, наследовать одними классами свойства и поведение других классов для дальнейшего расширения или модификации.

Что если, мы не хотим штамповать одинаковых трансформеров, а хотим сделать общий каркас, но с разным обвесом? ООП позволяет нам такую шалость путем разделения логики на сходства и различия с последующим выносом сходств в родительский класс, а различий в классы-потомки. Как это выглядит?

Оптимус Прайм и Мегатрон — оба трансформеры, но один является автоботом, а второй десептиконом. Допустим, что различия между автоботами и десептиконами будут заключаться только в том, что автоботы трансформируются в автомобили, а десептиконы — в авиацию. Все остальные свойства и поведение не будут иметь никакой разницы. В таком случае можно спроектировать систему наследования так: общие черты (бег, стрельба) будут описаны в базовом классе «Трансформер», а различия (трансформация) в двух дочерних классах «Автобот» и «Десептикон».

class Transformer(){ // базовый класс
    function run(){
        // код, отвечающий за бег
    }
    function fire(){
        // код, отвечающий за стрельбу
    }
}

class Autobot(Transformer){ // дочерний класс, наследование от Transformer
    function transform(){
        // код, отвечающий за трансформацию в автомобиль
    }
}

class Decepticon(Transformer){ // дочерний класс, наследование от Transformer
    function transform(){
        // код, отвечающий за трансформацию в самолет
    }
}

optimus = new Autobot()
megatron = new Decepticon()



Анимация №3

Сей пример наглядно иллюстрирует, как наследование становится одним из способов дедуплицировать код (DRY-принцип) с помощью родительского класса, и одновременно предоставляет возможности для мутации в классах-потомках.

Перегрузка


Если же в классе-потомке переопределить уже существующий метод в классе-родителе, то сработает перегрузка. Это позволяет не дополнять поведение родительского класса, а модифицировать. В момент вызова метода или обращения к полю объекта, поиск атрибута происходит от потомка к самому корню — родителю. То есть, если у автобота вызвать метод fire(), сначала поиск метода производится в классе-потомке — Autobot, а поскольку его там нет, поиск поднимается на ступень выше — в класс Transformer, где и будет обнаружен и вызван.

Неуместное применение


Любопытно, что чрезмерно глубокая иерархия наследования может привести к обратному эффекту — усложнению при попытке разобраться, кто от кого наследуется, и какой метод в каком случае вызывается. К тому же, не все архитектурные требования можно реализовать с помощью наследования. Поэтому применять наследование следует без фанатизма. Существуют рекомендации, призывающие предпочитать композицию наследованию там, где это уместно. Любая критика наследования, которую я встречал, подкрепляется неудачными примерами, когда наследование используется в качестве золотого молотка. Но это совершенно не означает, что наследование в принципе всегда вредит. Мой нарколог говорил, что первый шаг — это признать, что у тебя зависимость от наследования.

Как при описании отношений двух сущностей определить, когда уместно наследование, а когда — композиция? Можно воспользоваться популярной шпаргалкой: спросите себя, сущность А является сущностью Б? Если да, то скорее всего, тут подойдет наследование. Если же сущность А является частью сущности Б, то наш выбор — композиция.

Применительно к нашей ситуации это будет звучать так:

  1. Автобот является Трансформером? Да, значит выбираем наследование.
  2. Пушка является частью Трансформера? Да, значит — композиция.

Для самопроверки попробуйте обратную комбинацию, получится фигня. Эта шпаргалка помогает в большинстве случаев, но бывают и другие факторы, на которые стоит опираться при выборе между композицией и наследованием. Кроме того, эти методы можно комбинировать для решения разного типа задач.

Наследование статично


Еще одно важное отличие наследования от композиции в том, что наследование имеет статическую природу и устанавливает отношения классов только на этапе интерпретации/компиляции. Композиция же, как мы видели в примерах, позволяет менять отношение сущностей на лету прямо в рантайме — иногда это очень важно, поэтому об этом нужно помнить при выборе отношений (если конечно нет желания использовать метапрограммирование).

Множественное наследование


Мы рассмотрели ситуацию, когда два класса унаследованы от общего потомка. Но в некоторых языках можно сделать и наоборот — унаследовать один класс от двух и более родителей, объединив их свойства и поведение. Возможность наследоваться от нескольких классов вместо одного — это множественное наследование.

Вообще, в кругах иллюминатов бытует мнение, что множественное наследование — это грех, оно несет за собой ромбовидную проблему и неразбериху с конструкторами. Кроме того, задачи, которые решаются множественным наследованием, можно решать другими механизмами, например, механизмом интерфейсов (о котором мы тоже поговорим). Но справедливости ради, следует отметить, что множественное наследование удобно использовать для реализации примесей.

Абстрактные классы


Кроме обычных классов в некоторых языках существуют абстрактные классы. От обычных классов они отличаются тем, что нельзя создать объект такого класса. Зачем же нужен такой класс, спросит читатель? Он нужен для того, чтобы от него могли наследоваться потомки — обычные классы, объекты которых уже можно создавать.

Абстрактный класс наряду с обычными методами содержит в себе абстрактные методы без имплементации (с сигнатурой, но без кода), которые обязан имплементировать программист, задумавший создать класс-потомок. Абстрактные классы не обязательны, но они помогают установить контракт, обязующий имплементировать определенный набор методов, дабы уберечь программиста с плохой памятью от ошибки имплементации.

Полиморфизм


Полиморфизм — свойство системы, позволяющее иметь множество реализаций одного интерфейса. Ничего непонятно. Обратимся к трансформерам.

Положим, у нас есть три трансформера: Оптимус, Мегатрон и Олег. Трансформеры боевые, стало быть обладают методом attack(). Игрок, нажимая у себя на джойстике кнопку «воевать», сообщает игре, чтобы та вызвала метод attack() у трансформера, за которого играет игрок. Но поскольку трансформеры разные, а игра интересная, каждый из них будет атаковать каким-то своим способом. Скажем, Оптимус — объект класса Автобот, а Автоботы снабжаются пушками с плутониевыми боеголовками (да не прогневаются фанаты трансформеров). Мегатрон — Десептикон, и стреляет из плазменной пушки. Олег — басист, и он обзывается. А в чем польза?

Польза полиморфизма в данном примере заключается в том, что код игры ничего не знает о реализации его просьбы, кто как должен атаковать, его задача просто вызвать метод attack(), сигнатура которого одинакова для всех классов персонажей. Это позволяет добавлять новые классы персонажей, или менять методы существующих, не меняя код игры. Это удобно.

Инкапсуляция


Инкапсуляция — это контроль доступа к полям и методам объекта. Под контролем доступа подразумевается не только можно/неможно, но и различные валидации, подгрузки, вычисления и прочее динамическое поведение.

Во многих языках частью инкапсуляции является сокрытие данных. Для этого существуют модификаторы доступа (опишем те, которые есть почти во всех ООП языках):

  • publiс — к атрибуту может получить доступ любой желающий
  • private — к атрибуту могут обращаться только методы данного класса
  • protected — то же, что и private, только доступ получают и наследники класса в том числе
class Transformer(){
    public function constructor(){ }

    protected function setup(){ }

    private function dance(){ }
}

Как правильно выбрать модификатор доступа? В простейшем случае так: если метод должен быть доступен внешнему коду, выбираем public. В противном случае — private. Если есть наследование, то может потребоваться protected в случае, когда метод не должен вызываться снаружи, но должен вызываться потомками.

Аксессоры (геттеры и сеттеры)


Геттеры и сеттеры — это методы, задача которых контролировать доступ к полям. Геттер считывает и возвращают значение поля, а сеттер — наоборот, принимает в качестве аргумента значение и записывает в поле. Это дает возможность снабдить такие методы дополнительными обработками. Например, сеттер при записи значения в поле объекта, может проверить тип, или входит ли значение в диапазон допустимых (валидация). В геттер же можно добавить, ленивую инициализацию или кэширование, если актуальное значение на самом деле лежит в базе данных. Применений можно придумать множество.

В некоторых языках есть синтаксический сахар, позволяющий такие аксессоры маскировать под свойства, что делает доступ прозрачным для внешнего кода, который и не подозревает, что работает не с полем, а с методом, у которого под капотом выполняется SQL-запрос или чтение из файла. Так достигается абстракция и прозрачность.

Интерфейсы


Задача интерфейса — снизить уровень зависимости сущностей друг от друга, добавив больше абстракции.

Не во всех языках присутствует этот механизм, но в ООП языках со статической типизацией без них было бы совсем худо. Выше мы рассматривали абстрактные классы, затрагивая тему контрактов, обязующих имплементировать какие-то абстрактные методы. Так вот интерфейс очень смахивает на абстрактный класс, но является не классом, а просто пустышкой с перечислением абстрактных методов (без имплементации). Другими словами, интерфейс имеет декларативную природу, то есть, чистый контракт без капельки кода.

Обычно в языках, в которых есть интерфейсы, нет множественного наследования классов, но есть множественное наследование интерфейсов. Это позволяет классу перечислить интерфейсы, которые он обязуется имплементировать.

Классы с интерфейсами состоят в отношении «многие ко многим»: один класс может имплементировать множество интерфейсов, и каждый интерфейс, в свою очередь, может имплементироваться многими классами.

У интерфейса двустороннее применение:

  1. По одну сторону интерфейса — классы, имплементирующие данный интерфейс.
  2. По другую сторону — потребители, которые используют этот интерфейс в качестве описания типа данных, с которым они (потребители) работают.

Например, если какой-то объект помимо основного поведения, может быть сериализован, то пускай он имплементирует интерфейс «Сериализуемый». А если объект можно склонировать, то пусть он имплементирует еще один интерфейс — «Клонируемый». И если у нас есть какой-то транспортный модуль, который передает объекты по сети, он будет принимать любые объекты, имплементирующие интерфейс «Сериализуемый».

Представим, что каркас трансформера оборудован тремя слотами: слот для оружия, для генератора энергии и для какого-нибудь сканера. Эти слоты обладают определенными интерфейсами: в каждый слот можно установить только подходящее оборудование. В слот для оружия можно установить ракетную установку или лазерную пушку, в слот для генератора энергии — ядерный реактор или РИТЭГ (радиоизотопный термоэлектрический генератор), а в слот для сканера — радар или лидар. Суть в том, что каждый слот имеет универсальный интерфейс подключения, а уже конкретные устройства должны соответствовать этому интерфейсу. К примеру, на материнских платах используется несколько типов слотов: слот для процессора позволяет подключать различные процессоры, подходящие под данный сокет, а слот SATA — любой SSD или HDD накопитель или даже CD/DVD.

Обращаю внимание, что получившаяся система слотов у трансформеров — это пример использования композиции. Если же оборудование в слотах будет сменным в ходе жизни трансформера, то тогда это уже агрегация. Для наглядности, мы будем называть интерфейсы, как принято в некоторых языках, добавляя заглавную «И» перед именем: IWeapon, IEnergyGenerator, IScanner.

// описания интерфейсов:

interface IWeapon{
    function fire() {} // декларация метода без имплементации. Ниже аналогично
}

interface IEnergyGenerator{
    // тут уже два метода, которые должны будут реализовать классы:
    function generate_energy() {} // первый
    function load_fuel() {}       // второй
}

interface IScanner{
    function scan() {}
}


// классы, реализующие интерфейсы:

class RocketLauncher() : IWeapon
{
    function fire(){
        // имплементация запуска ракеты
    }
}

class LaserGun() : IWeapon
{
    function fire(){
        // имплементация выстрела лазером
    }
}

class NuclearReactor() : IEnergyGenerator
{
    function generate_energy(){
        // имплементация генерации энергии ядерным реактором
    }
	
    function load_fuel(){
        // имплементация загрузки урановых стержней
    }
}

class RITEG() : IEnergyGenerator
{
    function generate_energy(){
        // имплементация генерации энергии РИТЭГ
    }
	
    function load_fuel(){
        // имплементация загрузки РИТЭГ-пеллет
    }
}

class Radar() : IScanner
{
    function scan(){
        // имплементация использования радиолокации
    }	
}

class Lidar() : IScanner
{
    function scan(){
        // имплементация использования оптической локации
    }
}

// класс - потребитель:

class Transformer() {
    // привет, композиция:
    IWeapon slot_weapon   // Интерфейсы указаны в качестве типов данных.
    IEnergyGenerator slot_energy_generator // Они могут принимать любые объекты,
    IScanner slot_scanner // которые имплементируют указанный интерфейс
	
    /*
    в параметрах методов интерфейс тоже указан как тип данных,
    метод может принимать объект любого класса,
    имплементирующий данный интерфейс:
    */
    function install_weapon(IWeapon weapon){ 
        this.slot_weapon = weapon
    }
	
    function install_energy_generator(IEnergyGenerator energy_generator){
        this.slot_energy_generator = energy_generator
    }
	
    function install_scanner(IScanner scanner){
        this.slot_scanner = scanner
    }
}

// фабрика трансформеров

class TransformerFactory(){
    function build_some_transformer() {
       	transformer = new Transformer()
       	laser_gun = new LaserGun()
       	nuclear_reactor = new NuclearReactor()
       	radar = new Radar()
       	
       	transformer.install_weapon(laser_gun)
       	transformer.install_energy_generator(nuclear_reactor)
       	transformer.install_scanner(radar)
        	
        return transformer
    }
}

// использование

transformer_factory = new TransformerFactory()
oleg = transformer_factory.build_some_transformer()



Анимация №4

К сожалению, в картинку не влезла фабрика, но она все равно необязательна, трансформера можно собрать и во дворе.

Обозначенный на картинке слой абстракции в виде интерфейсов между слоем имплементации и слоем-потребителем дает возможность абстрагировать одних от других. Вы можете это наблюдать, посмотрев на каждый слой в отдельности: в слое имплементации (слева) нет ни слова про класс Transformer, а в слое-потребителе (справа) нет ни слова про конкретные имплементации (там нет слов Radar, RocketLauncher, NuclearReactor и т. д.)

В таком коде мы можем создавать новые комплектующие к трансформерам, не затрагивая чертежи самих трансформеров. В то же время и наоборот, мы можем создавать новых трансформеров, комбинируя уже существующие комплектующие, либо добавлять новые комплектующие, не меняя существующих.

Утиная типизация


Явление, которое мы наблюдаем в получившейся архитектуре, называется утиной типизацией: если что-то крякает как утка, плавает как утка, и выглядит как утка, то, скорее всего — это утка.

Переводя это на язык трансформеров, звучать будет так: если что-то стреляет как пушка, и перезаряжается как пушка, скорее всего это пушка. Если устройство генерирует энергию, скорее всего это генератор энергии.

В отличие от иерархической типизации наследования, при утиной типизации трансформеру пофиг, какого класса пушку ему дали, и пушка ли это вообще. Главное, что эта штуковина умеет стрелять! Это не достоинство утиной типизации, а скорее компромисс. Может быть и обратная ситуация, как на этой картинке ниже:

ISP

(Interface Segregation Principle / Принцип разделения интерфейса / Четвертый принцип SOLID) призывает не создавать жирные универсальные интерфейсы. Вместо этого интерфейсы нужно разделять на более мелкие и специализированные, это поможет гибче их комбинировать в имплементирующих классах, не заставляя имплементировать лишние методы.

Абстракция


В ООП все крутится вокруг абстракции. Существуют фанатики, утверждающие, что абстракция должна быть частью ООП-троицы (инкапсуляция, полиморфизм, наследование). А мой инспектор по УДО говорил обратное: абстракция присуща для любого программирования, а не только для ООП, поэтому она должна стоять отдельно. С другой стороны, то же самое можно сказать и про остальные принципы, но из песни слов не выкинешь. Так или иначе, абстракция нужна, и особенно в ООП.

Уровень абстракции


Тут нельзя не процитировать одну известную шутку:
— любую архитектурную проблему можно решить добавлением дополнительного слоя абстракции, кроме проблемы большого количества абстракций.

В нашем примере с интерфейсами мы внедрили слой абстракции между трансформерами и комплектующими, сделав архитектуру более гибкой. Но какой ценой? Нам пришлось усложнить архитектуру. Мой психотерапевт говорил, что умение балансировать между простотой архитектуры и гибкостью приложения — это искусство. Выбирая золотую середину, следует опираться не только на собственный опыт и интуицию, но и на контекст текущего проекта. Поскольку будущее человек видеть пока не научился, нужно аналитически прикинуть, какой уровень абстракции и с какой долей вероятности может пригодиться в данном проекте, сколько времени потребуется на проработку гибкой архитектуры, и окупится ли затраченное время в будущем.

Неверный выбор уровня абстракции ведет к одной из двух проблем:

  1. если абстракции недостаточно, дальнейшие расширения проекта будут упираться в архитектурные ограничения, которые ведут либо к рефакторингу и смене архитектуры, либо к обилию костылей (оба варианта обычно несут за собой боль и финансовые потери)
  2. если уровень абстракции слишком высок, это приведет к оверинжинирингу в виде чересчур сложной архитектуры, которую трудно поддерживать, и излишней гибкости, которая никогда в этом проекте не пригодится. В этой ситуации любые простейшие изменения в проекте будут сопровождаться дополнительной работой для удовлетворения требований архитектуры (это тоже порой несет определенную боль и финансовые потери)

Еще важно понимать, что уровень абстракции определяется не для всего проекта в целом, а отдельно для разных компонентов. В каких-то местах системы абстракции может быть недостаточно, а где-то наоборот — перебор. Однако, неверный выбор уровня абстракции можно исправить своевременным рефакторингом. Ключевое слово — своевременным. Запоздалый рефакторинг провести проблематично, когда на данном уровне абстракции реализовано уже множество механизмов. Проводить обряд рефакторинга в запущенных системах может сопрягаться с острой болью в труднодоступных местах программиста. Это примерно как поменять фундамент в доме — дешевле построить рядом дом с нуля.

Давайте рассмотрим определение уровня абстракции из возможных вариантов на примере гипотетической игры «трансформеры-онлайн». Уровни абстракции в данном случае будут выступать как слои, каждый последующий рассматриваемый слой будет ложиться поверх предыдущего, забирая из него часть функционала в себя.

Первый слой. В игре есть один класс трансформера, все свойства и поведение описаны в нем. Это совсем деревянный уровень абстракции, подходит для казуальной игры, которая не предполагает никакой особой гибкости.

Второй уровень. В игре есть базовый трансформер с основными способностями и классы трансформеров со своей специализацией (типа разведчик, штурмовик, саппорт), которая описывается дополнительными методами. Тем самым игроку предоставляется возможность выбора, а разработчикам упрощается добавление новых классов.

Третий уровень. Помимо классификации трансформеров вводится агрегация с помощью системы слотов и компонентов (как в нашем примере с реакторами, пушками и радарами). Теперь часть поведения будет определяться тем, какой стаф игрок установил в своего трансформера. Это дает игроку еще больше возможностей для кастомизации игровой механики персонажа, а разработчикам дает возможность добавлять эти самые модули расширения, что в свою очередь упрощает работу гейм-дизайнерам по выпуску нового контента.

Четвертый уровень. В компоненты можно тоже включить собственную агрегацию, предоставляющую возможность выбора материалов и деталей, из которого собираются эти компоненты. Такой подход даст игроку возможность не только набивать трансформеров нужными комплектующими, но и самостоятельно производить эти комплектующие из различных деталек. Признаться, такой уровень абстракции я в играх никогда не встречал, и не без резона! Ведь это сопровождается значительным усложнением архитектуры, а регулировка баланса в таких играх превращается в ад. Но не исключаю, что такие игры существуют.

Как видим, каждый описанный слой, в принципе, имеет право на жизнь. Все зависит от того, какую именно гибкость мы хотим заложить в проект. Если в техническом задании ничего об этом не сказано, или автор проекта сам не знает, что может потребовать бизнес, можно посмотреть на похожие проекты в этой сфере и ориентироваться на них.

Паттерны проектирования


Десятилетия разработки привели к тому, что сформировался список наиболее часто применяемых архитектурных решений, которые со временем были классифицированы сообществом, и стали называться паттернами проектирования. Именно поэтому, когда я прочитал впервые про паттерны, я с удивлением обнаружил, что оказывается, многие из них я уже использую на практике, просто не знал, что у этих решений есть название.

Паттерны проектирования, как и абстракция, свойственны не только ООП разработке, но и другим парадигмам. Вообще, тема паттернов выходит за рамки данной статьи, но здесь хотелось бы предостеречь молодого разработчика, который только намерен познакомиться с паттернами. Это ловушка! Сейчас объясню, почему.

Предназначение паттернов — помощь в решении архитектурных проблем, которые либо уже обнаружились, либо вероятнее всего обнаружатся в ходе развития проекта. Так вот, прочитав про паттерны, у новичка может появится непреодолимый соблазн использовать паттерны не для решения проблем, а для их порождения. А поскольку разработчик в своих желаниях необуздан, он может начать не решать задачу при помощи паттернов, а подстраивать любые задачи под решения с помощью паттернов.

Еще одна ценность от паттернов — формализации терминологии. Гораздо проще коллеге сказать, что в этом месте используется «цепочка обязанностей», чем полчаса рисовать поведение и отношения объектов на бумажке.

Заключение


В условиях современных требований наличие в вашем коде слова class не делает из вас ООП-программиста. Ибо если вы не используете описанные в статье механизмы (полиморфизм, композицию, наследование и т. д.), а вместо этого применяете классы лишь для группировки функций и данных, то это не ООП. То же самое можно решить какими-нибудь неймспейсами и структурами данных. Не путайте, иначе на собеседовании будет стыдно.

Хочется закончить свою песнь важными словами. Любые описанные механизмы, принципы и паттерны, как и ООП в целом не стоит применять там, где это бессмысленно или может навредить. Это ведет к появлению статей со странными заголовками типа «Наследование — причина преждевременного старения» или «Синглтон может приводить к онкологическим заболеваниям».

Я серьезно. Если рассмотреть случай с синглтоном, то его повсеместное применение без знания дела, стало причиной серьезных архитектурных проблем во многих проектах. И любители забивать гвозди микроскопом любезно его нарекли антипаттерном. Будьте благоразумны.

К сожалению, в проектировании не существует однозначных рецептов на все случаи жизни, где что применять уместно, а где неуместно. Это будет постепенно укладываться в голове с опытом.

Урок #16 — Что такое ООП в JavaScript?

За урок мы познакомимся с понятием ООП и узнаем про основные концепции данной технологии. Нами будут изучены базовые понятия ООП, а также мы разберем что такое классы и объекты в языке JavaScript.

На начальном этапе ООП – это тёмный лес, в котором многое непонятно и слишком усложнено. На самом деле всё вовсе не так. Предлагаем абстрагироваться от специфических (непонятных) определений и познакомиться с ООП простыми словами. 

Поскольку на примере все усвоить гораздо проще, то давайте за пример возьмем робота, которого постараемся описать за счёт классов в ООП.

Класс в случае с роботом – это его чертёж. Экземпляром класса (объектом) называет целый робот, который создан точно по чертежу.


Наследование – это добавление полезных опций к чертежу робота. К примеру, берем стандартный чертёж робота и дорисуем к нему лазеры, крылья и броню. Все эти дорисовки мы сделаем в классе наследнике, основной функционал которого взят из родительского класса.

Полиморфизм – это общий функционал для всех роботов и не важно что каждый робот может очень сильно отличаться друг от друга. К примеру, в главном классе мы указываем возможность передвижения для всех последующих роботов. Далее в классе наследнике мы можем дополнительно указать возможность левитации для робота, в другом же классе укажем возможность передвижения по воде и так далее. Получается, что есть общий функционал что записан в главном чертеже, но его можно переписать для каждого последующего робота (для каждого наследника).

А инкапсуляция является для нас бронёй, защищающей робота. Под пластырем брони находятся уязвимые элементы, вроде проводов и микросхем. После прикрытия брешей с помощью брони, робот полностью защищён от внешних вмешательств. По сути, мы делаем доступ ко всем полям лишь за счёт методов, тем самым прямой доступ к полю будет закрыт.

У всех классов методы могут отличаться, как и поля с конструкторами. Каждый класс позволяет создавать любое количество разных объектов, все из них имеют собственные характеристики.

Введение в объекты JavaScript — Изучение веб-разработки

В JavaScript большинство сущностей являются объектами, начиная с самого основного функционала JavaScript, такого как строки (strings) и массивы (array), и заканчивая встроенными в браузер API. Вы можете даже создавать свои собственные объекты, чтобы инкапсулировать связанные между собой функции и переменные в эффективные пакеты и действовать как удобные хранилища данных. Понимание объектно-ориентированной природы JavaScript очень важно, если Вы хотите продолжить дальнейшее более углубленное изучение языка. Поэтому мы предоставляем Вам данный модуль, чтобы помочь Вам разобраться в этом. Здесь мы детально обучим Вас теории и синтаксису объектов, а затем рассмотрим, как создавать свои собственные объекты. 

Необходимые знания

Перед тем, как начать изучение данного модуля, Вы должны иметь некоторое представление о HTML и CSS. Мы советуем Вам поработать над разделами Введение в HTML и Введение в CSS перед изучением этого модуля JavaScript.

Также Вам необходимо знать основы JavaScript перед подробным изучением объектов JavaScript. Предварительно поработайте с разделами Первые шаги в JavaScript и Структурные элементы в JavaScript перед началом изучения данного модуля.

Примечание: Если Вы работаете за компьютером/планшетом/другим устройством, на котором у Вас нет возможности создавать собственные файлы, постарайтесь поработать с примерами кода на платформах онлайн-программирования, таких, как JSBin or Thimble.

Руководства

Основы объектов
В первой статье мы рассмотрим объекты в JavaScript. Мы будем разбирать основы синтаксиса объектов JavaScript и заново изучим некоторый функционал JavaScript, который мы уже исследовали ранее на курсе, подтвердив тот факт, что большая часть функционала, с которым мы уже столкнулись, в действительности является объектами.
Объектно-ориентированный JavaScript для начинающих
Закончив с основами, мы сфокусируемся на объектно-ориентированном JavaScript (OOJS) —  эта статья представляет основы теории объектно-ориентированного программирования (ООП). Затем мы изучим, как JavaScript эмулирует классы объектов через конструктор функций, и как создавать экземпляры объектов.
Прототипы объектов
Прототипы — это механизм, благодаря которому объекты в JavaScript наследуют функционал друг друга, но при этом они работают иначе по сравнению с механизмами наследования в классических объектно-ориентированных языках. В этой статье мы изучим эти отличия, объясним, как работает цепочка прототипов, и рассмотрим, как свойство прототипа может быть использовано для добавления методов к существующим конструкторам.
Наследование в JavaScript
После знакомства с самыми жуткими подробностями OOJS, эта статья покажет, как создавать «дочерные» классы объектов (конструкторы), которые наследуют функционал от своих «родительских» классов. В дополнении, мы дадим Вам пару советов о том, где и когда можно использовать OOJS.
Работа с JSON-данными
Представление объектов в JavaScript (JavaScript Object Notation) (JSON) — это стандартный формат для представления структурированных данных в виде объектов JavaScript, который обычно используется для представления и передачи данных на веб-сайтах (т.е. передача некоторых данных от сервера к клиенту — таким образом они могут быть отображены на веб-странице). Вы довольно часто будете с этим сталкиваться, поэтому в данной статье мы предоставим вам все, что необходимо для работы с JSON с помощью JavaScript, в том числе доступ к элементам данных в объекте JSON и написания собственного JSON-кода.
Практика построения объектов
В предыдущих статьях мы рассматривали самые основные моменты в теории и синтаксисе объектов в JavaScript, дав Вам твердую основу для начала. В этой статье мы погрузимся в практические занятия, получим больше практической работы в построении собственных объектов в JavaScript, чтобы сделать кое-что веселое и красочное — несколько цветных прыгающих шариков.

Задания

Добавление функционала к демо с прыгающими шариками
В этом задании, мы ожидаем, что Вы, используя демо с прыгающими шариками из предыдущей статьи как отправную точку, добавите немного нового и интересного функционала в него.

Я не знаю ООП / Хабр

Я не умею программировать на объектно-ориентированных языках. Не научился. После 5 лет промышленного программирования на Java я всё ещё не знаю, как создать хорошую систему в объектно-ориентированном стиле. Просто не понимаю.

Я пытался научиться, честно. Я изучал паттерны, читал код open source проектов, пытался строить в голове стройные концепции, но так и не понял принципы создания качественных объектно-ориентированных программ. Возможно кто-то другой их понял, но не я.

И вот несколько вещей, которые вызывают у меня непонимание.

Я не знаю, что такое ООП

Серьёзно. Мне сложно сформулировать основные идеи ООП. В функциональном программировании одной из основных идей является отсутствие состояния. В структурном — декомпозиция. В модульном — разделение функционала в законченные блоки. В любой из этих парадигм доминирующие принципы распространяются на 95% кода, а язык спроектирован так, чтобы поощрять их использование. Для ООП я таких правил не знаю.

Принято считать, что объектно-ориентированное программирование строится на 4 основных принципах (когда я был мал, их было всего 3, но ведь тогда и деревья были большими). Эти принципы:

  • Абстракция
  • Инкапсуляция
  • Наследование
  • Полиморфизм

Смахивает на свод правил, не так ли? Значит вот оно, те самые правила, которым нужно следовать в 95% случаев? Хмм, давайте посмотрим поближе.

Абстракция

Абстракция — это мощнейшее средство программирования. Именно то, что позволяет нам строить большие системы и поддерживать контроль над ними. Вряд ли мы когда-либо подошли бы хотя бы близко к сегодняшнему уровню программ, если бы не были вооружены таким инструментом. Однако как абстракция соотносится с ООП?

Во-первых, абстрагирование не является атрибутом исключительно ООП, да и вообще программирования. Процесс создания уровней абстракции распространяется практически на все области знаний человека. Так, мы можем делать суждения о материалах, не вдаваясь в подробности их молекулярной структуры. Или говорить о предметах, не упоминая материалы, из которых они сделаны. Или рассуждать о сложных механизмах, таких как компьютер, турбина самолёта или человеческое тело, не вспоминая отдельных деталей этих сущностей.

Во-вторых, абстракции в программировании были всегда, начиная с записей Ады Лавлейс, которую принято считать первым в истории программистом. С тех пор люди бесперерывно создавали в своих программах абстракции, зачастую имея для этого лишь простейшие средства. Так, Абельсон и Сассман в своей небезызвестной книге описывают, как создать систему решения уравнений с поддержкой комплексных чисел и даже полиномов, имея на вооружении только процедуры и связные списки. Так какие же дополнительные средства абстрагирования несёт в себе ООП? Понятия не имею. Выделение кода в подпрограммы? Это умеет любой высокоуровневый язык. Объединение подпрограмм в одном месте? Для этого достаточно модулей. Типизация? Она была задолго до ООП. Пример с системой решения уравнений хорошо показывает, что построение уровней абстракции не столько зависит от средств языка, сколько от способностей программиста.

Инкапсуляция

Главный козырь инкапсуляции в сокрытии реализации. Клиентский код видит только интерфейс, и только на него может рассчитывать. Это развязывает руки разработчикам, которые могут решить изменить реализацию. И это действительно круто. Но вопрос опять же в том, причём тут ООП? Все вышеперечисленные парадигмы подразумевают сокрытие реализации. Программируя на C вы выделяете интерфейс в header-файлы, Oberon позволяет делать поля и методы локальными для модуля, наконец, абстракция во многих языках строится просто посредствам подпрограмм, которые также инкапсулируют реализацию. Более того, объектно-ориентированные языки сами зачастую нарушают правило инкапсуляции, предоставляя доступ к данным через специальные методы — getters и setters в Java, properties в C# и т.д. (В комментариях выяснили, что некоторые объекты в языках программирования не являются объектами с точки зрения ООП: data transfer objects отвечают исключительно за перенос данных, и поэтому не являются полноценными сущностями ООП, и, следовательно, для них нет необходимости сохранять инкапсуляцию. С другой стороны, методы доступа лучше сохранять для поддержания гибкости архитектуры. Вот так всё непросто.) Более того, некоторые объектно-ориентированные языки, такие как Python, вообще не пытаются что-то скрыть, а расчитывают исключительно на разумность разработчиков, использующих этот код.

Наследование

Наследование — это одна из немногих новых вещей, которые действительно вышли на сцену благодаря ООП. Нет, объектно-ориентированные языки не создали новую идею — наследование вполне можно реализовать и в любой другой парадигме — однако ООП впервые вывело эту концепцию на уровень самого языка. Очевидны и плюсы наследования: когда вас почти устраивает какой-то класс, вы можете создать потомка и переопределить какую-то часть его функциональности. В языках, поддерживающих множественное наследование, таких как C++ или Scala (в последней — за счёт traits), появляется ещё один вариант использования — mixins, небольшие классы, позволяющие «примешивать» функциональность к новому классу, не копируя код.

Значит, вот оно — то, что выделяет ООП как парадигму среди других? Хмм… если так, то почему мы так редко используем его в реальном коде? Помните, я говорил про 95% кода, подчиняющихся правилам доминирующей парадигмы? Я ведь не шутил. В функцинальном программировании не меньше 95% кода использует неизменяемые данные и функции без side-эффектов. В модульном практически весь код логично расфасован по модулям. Преверженцы структурного программирования, следуя заветам Дейкстры, стараются разбивать все части программы на небольшие части. Наследование используется гораздо реже. Может быть в 10% кода, может быть в 50%, в отдельных случаях (например, при наследовании от классов фреймворка) — в 70%, но не больше. Потому что в большинстве ситуаций это просто не нужно.

Более того, наследование опасно для хорошего дизайна. Настолько опасно, что Банда Четырех (казалось бы, проповедники ООП) в своей книге рекомендуют при возможности заменять его на делегирование. Наследование в том виде, в котором оно существует в популярных ныне языках ведёт к хрупкому дизайну. Унаследовавшись от одного предка, класс уже не может наследоваться от других. Изменение предка так же становится опасным. Существуют, конечно, модификаторы private/protected, но и они требуют неслабых экстрасенсорных способностей для угадывания, как класс может измениться и как его может использовать клиентский код. Наследование настолько опасно и неудобно, что крупные фреймворки (такие как Spring и EJB в Java) отказываются от них, переходя на другие, не объектно-ориентированные средства (например, метапрограммирование). Последствия настолько непредсказуемы, что некоторые библиотеки (такие как Guava) прописывает своим классам модификаторы, запрещающие наследование, а в новом языке Go было решено вообще отказаться от иерархии наследования.

Полиморфизм

Пожалуй, полиморфизм — это лучшее, что есть в объектно-ориентированном программировании. Благодаря полиморфизму объект типа Person при выводе выглядит как «Шандоркин Адам Имполитович», а объект типа Point — как «[84.23 12.61]». Именно он позволяет написать «Mat1 * Mat2» и получить произведение матриц, аналогично произведению обычных чисел. Без него не получилось бы и считывать данные из входного потока, не заботясь о том, приходят они из сети, файла или строки в памяти. Везде, где есть интерфейсы, подразумевается и полиморфизм.

Мне правда нравится полиморфизм. Поэтому я даже не стану говорить о его проблемах в мейнстримовых языках. Я также промолчу про узость подхода диспетчеризации только по типу, и про то, как это могло бы быть сделано. В большинстве случаев он работает как надо, а это уже неплохо. Вопрос в другом: является ли полиморфизм тем самым принципом, отличающим ООП от других парадигм? Если бы вы спросили меня (а раз уж вы читаете этот текст, значит, можно считать, что спросили), я бы ответил «нет». И причина всё в тех же процентах использования в коде. Возможно, интерфейсы и полиморфные методы встречаются немного чаще наследования. Но сравните количество строк кода, занимаемое ими, с количеством строк, написанных в обычном процедурном стиле — последних всегда больше. Глядя на языки, поощряющие такой стиль программирования, я не могу назвать их полиморфными. Языки с поддержкой полиморфизма — да, так нормально. Но не полиморфные языки.

(Впрочем, это моё мнение. Вы всегда можете не согласиться.)

Итак, абстракция, инкапсуляция, наследование и полиморфизм — всё это есть в ООП, но ничто из этого не является его неотъемлемым атрибутом. Тогда что такое ООП? Есть мнение, что суть объектно-ориентированного программирования лежит в, собственно, объектах (звучит вполне логично) и классах. Именно идея объединения кода и данных, а также мысль о том, что объекты в программе отражают сущности реального мира. К этому мнению мы ещё вернёмся, но для начала расставим некоторые точки над i.

Чьё ООП круче?

Из предыдущей части видно, что языки программирования могут сильно отличаться по способу реализации объектно-ориентированного программирования. Если взять совокупность всех реализаций ООП во всех языках, то вероятнее всего вы не найдёте вообще ни одной общей для всех черты. Чтобы как-то ограничить этот зоопарк и внести ясность в рассуждения, я остановлюсь только одной группе — чисто объекто-ориентированные языки, а именно Java и C#. Термин «чисто объектно-ориентированный» в данном случае означает, что язык не поддерживает другие парадигмы или реализует их через всё то же ООП. Python или Ruby, например, не буду являться чистыми, т.к. вы вполне можете написать полноценную программу на них без единого объявления класса.

Чтобы лучше понять суть ООП в Java и C#, пробежимся по примерам реализации этой парадигмы в других языках.

Smalltalk. В отличие от своих современных коллег, этот язык имел динамическую типизацию и использовал message-passing style для реализации ООП. Вместо вызовов методов объекты посылали друг другу сообщения, а если получатель не мог обработать то, что пришло, он просто пересылал сообщение кому-то ещё.

Common Lisp. Изначально CL придерживался такой же парадигмы. Затем разработчики решили, что писать `(send obj ‘some-message)` — это слишком долго, и преобразовали нотацию в вызов метода — `(some-method obj)`. На сегодняшний день Common Lisp имеет развитую систему объектно-ориентированного программирования (CLOS) с поддержкой множественного наследования, мультиметодов и метаклассов. Отличительной чертой является то, что ООП в CL крутится не вокруг объектов, а вокруг обобщённых функций.

Clojure. Clojure имеет целых 2 системы объектно-ориентированного программирования — одну, унаследованную от Java, и вторую, основанную на мультиметодах и более похожую на CLOS.

R. Этот язык для статистического анализа данных также имеет 2 системы объектно-ориентированного программирования — S3 и S4. Обе унаследованы от языка S (что не удивительно, учитывая, что R — это open source реализация коммерческого S). S4 по большей части соотвествует реализациям ООП в современных мейнстримовых языках. S3 является более легковесным вариантом, элементарно реализуемым средствами самого языка: создаётся одна общая функция, диспетчеризирующая запросы по атрибуту «class» полученного объекта.

JavaScript. По идеологии похож на Smalltalk, хотя и использует другой синтаксис. Вместо наследования использует прототипирование: если искомого свойства или вызванного метода в самом объекте нет, то запрос передаётся объекту-прототипу (свойство prototype всех объектов JavaScript). Интересным является факт, что поведение всех объектов класса можно поменять, заменив один из методов прототипа (очень красиво, например, выглядит добавление метода `.toBASE64` для класса строки).

Python. В целом придерживается той же концепции, что и мейнcтримовые языки, но кроме этого поддерживает передачу поиска атрибута другому объекту, как в JavaScript или Smalltalk.

Haskell. В Haskell вообще нет состояния, а значит и объектов в обычном понимании. Тем не менее, своеобразное ООП там всё-таки есть: типы данных (types) могут принадлежать одному или более классам типов (type classes). Например, практически все типы в Haskell состоят в классе Eq (отвечает за операции сравнения 2-х объектов), а все числа дополнительно в классах Num (операции над числами) и Ord (операции <, <=, >=, >). В менстримовых языках типам соответствуют классы (данных), а классам типов — интерфейсы.

Stateful или Stateless?

Но вернёмся к более распространённым системам объектно-ориентированного программирования. Чего я никогда не мог понять, так это отношения объектов с внутренним состоянием. До изучения ООП всё было просто и прозрачно: есть структуры, хранящие несколько связанных данных, есть процедуры (функции), их обрабатывающие. выгулять(собаку), снятьс(аккаунт, сумма). Потом пришли объекты, и это было тоже ничего (хотя читать программы стало гораздо сложней — моя собака выгуливала [кого?], а аккаунт снимал деньги [откуда?]). Затем я узнал про сокрытие данных. Я всё ещё мог выгулять собаку, но вот посмотреть состав её пищи уже не мог. Пища не выполняла никаких действий (наверное, можно было написать, что пища.съесть(собака), но я всё-таки предпочитаю, чтобы моя собака ела пищу, а не наоборот). Пища — это просто данные, а мне (и моей собаке) нужно было просто получить к ним доступ. Всё просто. Но в рамки парадигмы влезть было уже невозможно, как в старые джинсы конца 90-х.

Ну ладно, у нас есть методы доступа к данным. Пойдём на этот маленький самообман и притворимся, что данные у нас действительно скрыты. Зато я теперь знаю, что объекты — это в первую очередь данные, а потом уже, возможно, методы их обрабатывающие. Я понял, как писать программы, к чему нужно стремиться при проектировании.

Не успел я насладиться просветлением, как увидил в интернетах слово stateless (готов поклясться, оно было окружено сиянием, а над буквами t и l висел нимб). Короткое изучение литературы открыло чудесный мир прозрачного потока управления и простой многопоточности без необходимости отслеживать согласованность объекта. Конечно, мне сразу захотелось прикоснуться к этому чудесному миру. Однако это означало полный отказ от любых правил — теперь было непонятно, следует ли собаке самой себя выгуливать, или для этого нужен специальный ВыгулМенеджер; нужен ли аккаунт, или со всей работой справится Банк, а если так, то должен он списывать деньги статически или динамически и т.д. Количество вариантов использования возрасло экспоненциально, и все варианты в будущем могли привести к необходимости серьёзного рефакторинга.

Я до сих пор не знаю, когда объект следует сделать stateless, когда stateful, а когда просто контейнером данных. Иногда это очевидно, но чаще всего нет.

Типизация: статическая или динамическая?

Еща одна вещь, с которой я не могу определиться относительно таких языков, как C# и Java, это являются они статически или динамически типизированными. Наверное большинство людей воскликнет «Что за глупость! Конечно статически типизированными! Типы проверяются во время компиляции!». Но действительно ли всё так просто? Правда ли, что программист, прописывая в параметрах метода тип X может быть уверен, что в него всегда будут передаваться объекты именно типа X? Верно — не может, т.к. в метод X можно будет передать параметр типа X или его наследника. Казалось бы, ну и что? Наследники класса X всё равно будут иметь те же методы, что и X. Методы методами, а вот логика работы может оказаться совершенно другой. Самый распространённый случай, это когда дочерний класс оказывается соптимизированным под другие нужды, чем X, а наш метод может рассчитывать именно на ту оптимизацию (если вам такой сценарий кажется нереалистичным, попробуйте написать плагин к какой-нибудь развитой open source библиотеке — либо вы потратите несколько недель на разбор архитектуры и алгоритмов библиотеки, либо будете просто наугад вызывать методы с подходящей сигнатурой). В итоге программа работает, однако скорость работы падает на порядок. Хотя с точки зрения компилятора всё корректно. Показательно, что Scala, которую называют наследницей Java, во многих местах по умолчанию разрешает передавать только аргументы именно указанного типа, хотя это поведение и можно изменить.

Другая проблема — это значение null, которое может быть передано практически вместо любого объекта в Java и вместо любого Nullable объекта в C#. null принадлежит сразу всем типам, и в то же время не принадлежит ни одному. null не имеет ни полей, ни методов, поэтому любое обращение к нему (кроме проверки на null) приводит к ошибке. Вроде бы все к этому привыкли, но для сравнения Haskell (да и та же Scala) заставлют использовать специальные типы (Maybe в Haskell, Option в Scala) для обёртки функций, которые в других языках могли бы вернуть null. В итоге про Haskell часто говорят «скомпилировать программу на нём сложно, но если всё-таки получилось, значит скорее всего она работает корректно».

С другой стороны, мейнстримовые языки, очевидно, не являются динамически типизированными, а значит не обладают такими свойствами, как простота интерфейсов и гибкость процедур. В итоге писать в стиле Python или Lisp также становится невозможным.

Какая разница, как называется такая типизация, если все правила всё равно известны? Разница в том, с какой стороны подходить к проектированию архитектуры. Существует давний спор, как строить систему: делать много типов и мало функций, или мало типов и много функций? Первый подход активно используется в Haskell, второй в Lisp. В современных объектно-ориентированных языках используется что-то среднее. Я не хочу сказать, что это плохо — наверное у него есть свои плюсы (в конце концов не стоит забывать, что за Java и C# стоят мультиязыковые платформы), но каждый раз приступая к новому проекту я задумываюсь, с чего начать проектирования — с типов или с функционала.

И ещё…

Я не знаю, как моделировать задачу. Считается, что ООП позволяет отображать в программе объекты реального мира. Однако в реальности у меня есть собака (с двумя ушами, четырмя лапами и ошейником) и счёт в банке (с менеджером, клерками и обеденным перерывом), а в программе — ВыгулМенеджер, СчётФабрика… ну, вы поняли. И дело не в том, что в программе есть вспомогательные классы, не отражающие объекты реального мира. Дело в том, что поток управления изменяется. ВыгулМенеджер лишает меня удовольствия от прогулки с собакой, а деньги я получаю от бездушного БанкСчёта (эй, где та милая девушка, у которой я менял деньги на прошлой неделе?).

Может быть я сноб, но мне было гораздо приятней, когда данные в компьютере были просто данными, даже если описывали мою собаку или счёт в банке. С данными я мог сделать то, что удобно, без оглядки на реальный мир.

Я также не знаю, как правильно декомпозировать функционал. В Python или C++, если мне нужна была маленькая функция для преобразования строки в число, я просто писал её в конце файла. В Java или C# я вынужден выносить её в отдельный класс StringUtils. В недо-ОО-языках я мог объявить ad hoc обёртку для возврата двух значений из функции (снятую сумму и остаток на счету). В ООП языках мне придётся создать полноценный класс РезультатТранзакции. И для нового человека на проекте (или даже меня самого через неделю) этот класс будет выглядеть точно таким же важным и фундаментальным в архитектуре системы. 150 файлов, и все одинаково важные и фундаментальные — о да, прозрачная архитектура, прекрасные уровни абстракции.

Я не умею писать эффективные программы. Эффективные программы используют мало памяти — иначе сборщик мусора будет постоянно тормозить выполнение. Но чтобы совершить простейшую операцию в объектно-ориентированных языках приходится создавать дюжину объектов. Чтобы сделать один HTTP запрос мне нужно создать объект типа URL, затем объект типа HttpConnection, затем объект типа Request… ну, вы поняли. В процедурном программировании я бы просто вызвал несколько процедур, передав им созданную на стеке структуру. Скорее всего, в памяти был бы создан всего один объект — для хранения результата. В ООП мне приходится засорять память постоянно.

Возможно, ООП — это действительно красивая и элегантная парадигма. Возможно, я просто недостаточно умён, чтобы понять её. Наверное, есть кто-то, кто может создать действительно красивую программу на объектно-ориентированном языке. Ну что ж, мне остаётся только позавидовать им.

oop — Является ли JavaScript объектно-ориентированным?

Переполнение стека
  1. Около
  2. Товары
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. работы Программирование и связанные с ним технические возможности карьерного роста
  4. Талант Нанимайте технических специалистов и создавайте свой бренд работодателя
  5. реклама Обратитесь к разработчикам и технологам со всего мира
  6. О компании
,

Проверьте свои навыки: объектно-ориентированный JavaScript — Изучите веб-разработку

Цель этого теста навыков — оценить, поняли ли вы наши статьи «Объектно-ориентированный JavaScript для начинающих», «Прототипы объектов» и «Наследование в JavaScript».

Примечание : Вы можете опробовать решения в интерактивных редакторах ниже, однако может быть полезно загрузить код и использовать онлайн-инструмент, такой как CodePen, jsFiddle или Glitch, для работы над задачами.

Если вы застряли, обратитесь к нам за помощью — см. Раздел «Оценка или дополнительная помощь» внизу этой страницы.

Примечание : В приведенных ниже примерах, если в вашем коде есть ошибка, она будет выведена на панель результатов на странице, чтобы помочь вам найти ответ (или в консоли JavaScript браузера, в случае загружаемой версии).

OOJS 1

В этой задаче мы предоставляем вам конструктор. Мы хотим, чтобы вы:

  • Добавьте новый метод к прототипу класса Shape , calcPerimeter () , который вычисляет его периметр (длину внешнего края фигуры) и записывает результат в консоль.
  • Создайте новый экземпляр класса Shape с именем square . Дайте ему имя из квадратных и sideLength из 5 .
  • Вызовите свой метод calcPerimeter () в экземпляре, чтобы проверить, записывает ли он результат вычислений в консоль DevTools браузера, как ожидалось.
  • Создайте новый экземпляр формы Shape с именем треугольник , с именем из треугольника и sideLength из 3 .
  • Вызовите треугольник.calcPerimeter () , чтобы убедиться, что он работает нормально.

Попробуйте обновить живой код ниже, чтобы воссоздать законченный пример:

OOJS 2

Далее мы хотим, чтобы вы взяли класс Shape , который вы видели в Задаче № 1 (включая метод calcPerimeter () ), и воссоздали его, используя вместо этого синтаксис класса ES.

Проверьте, работает ли он, создав экземпляры объектов square и треугольник , как и раньше (используя new Shape () для обоих), а затем вызвав их методы calcPerimeter () .

Попробуйте обновить живой код ниже, чтобы воссоздать законченный пример:

OOJS 3

Наконец, мы хотели бы, чтобы вы начали с класса ES Shape , который вы создали в последней задаче.

Мы хотим, чтобы вы создали класс Square , который наследуется от Shape и добавляет метод calcArea () , который вычисляет площадь квадрата. Также настройте конструктор так, чтобы для свойства name экземпляров объекта Square автоматически было установлено значение square , а для свойства side автоматически было установлено значение 4 .Поэтому при вызове конструктора вам просто нужно указать свойство sideLength .

Создайте экземпляр класса Square с именем square с соответствующими значениями свойств и вызовите его методы calcPerimeter () и calcArea () , чтобы показать, что он работает нормально.

Попробуйте обновить живой код ниже, чтобы воссоздать законченный пример:

Оценка или дополнительная помощь

Вы можете попрактиковаться в этих примерах в интерактивных редакторах выше.

Если вы хотите, чтобы ваша работа была оценена, или вы застряли и хотите обратиться за помощью:

  1. Поместите свою работу в онлайн-редактор с общим доступом, такой как CodePen, jsFiddle или Glitch. Вы можете написать код самостоятельно или использовать файлы начальной точки, ссылки на которые приведены в приведенных выше разделах.
  2. Напишите сообщение с просьбой об оценке и / или помощи в категории «Обучение» на форуме MDN Discourse. Ваш пост должен включать:
    • Описательный заголовок, например «Требуется оценка для проверки навыков OOJS 1».
    • Подробная информация о том, что вы уже пробовали и что бы вы хотели, чтобы мы сделали, например если вы застряли и нуждаетесь в помощи или хотите пройти оценку.
    • Ссылка на пример, который вы хотите оценить или с которым вам нужна помощь, в онлайн-редакторе (как указано в шаге 1 выше). Это хорошая практика — очень сложно помочь кому-то с проблемой кодирования, если вы не видите его код.
    • Ссылка на страницу фактического задания или оценки, чтобы мы могли найти вопрос, в котором вам нужна помощь.
.